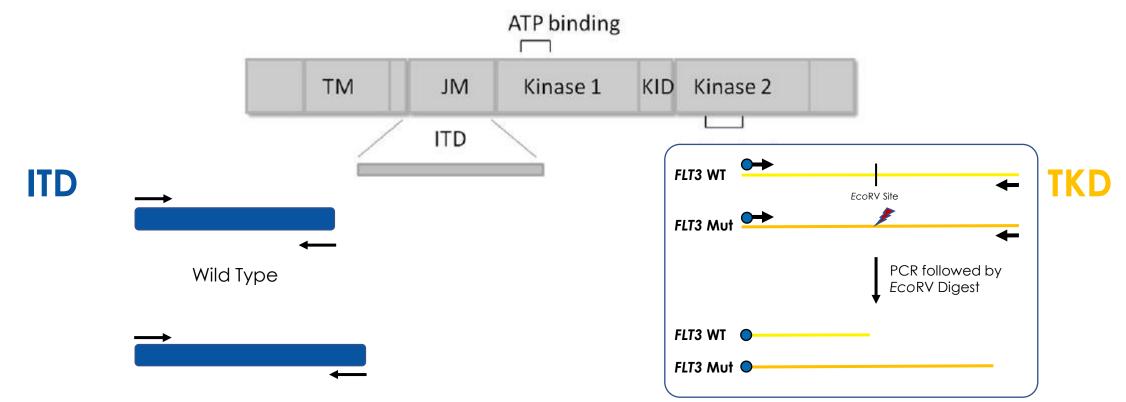
Background on the role of *FLT3* analysis in AML patients


FLT3-ITD is a common driver mutation in about 1/3 of AML patients and presents with a high leukemic burden and confers a poor prognosis

- Approximately 25% of all AML cases show a FLT3 ITD mutation
- About 7-10% of all AML cases have a FLT3 TKD mutation
- Very important markers for risk stratification and for guiding treatment decisions

FLT3 ITD and TKD Mutations

Overview of the FLT3 Gene

Internal Tandem Duplication > Wild Type

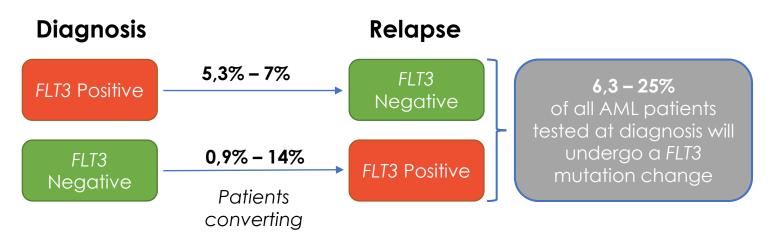
Adapted from: Liu et al. Tzu Chi Medical Journal 27 (2015) 18e24

Confidential and Proprietary Information. Unauthorized use, replication or dissemination is prohibited.

Prognostic Value of FLT3 in AML

Common characteristics:

Mutation	Characteristic		
FLT3 ITD	Most achieve remission with conventional induction chemotherapy, but they have a pronounced tendency to relapse quickly, and do not live as long compared to AML patients of a similar age lacking such a mutation.		
FLT3 TKD	The FLT3-TKD mutations are less common and they are also clinically actionable.		


Tyrosine Kinase Inhibitors are approved for FLT3 ITD and/or FLT3 TKD mutations.

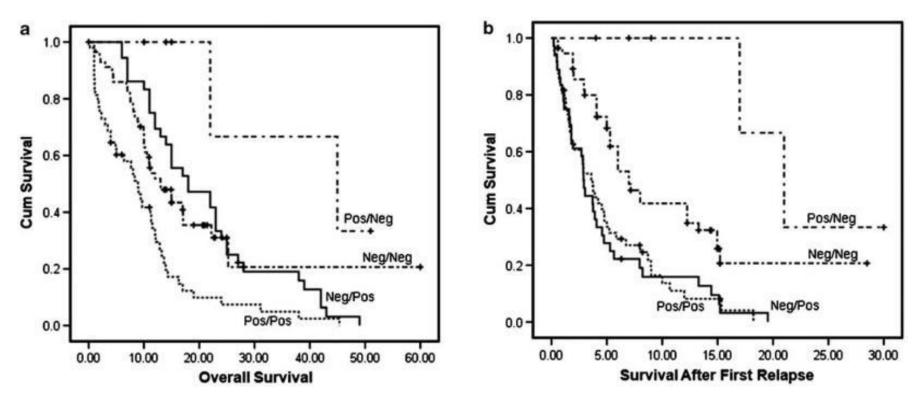
Blood. 2002;99(12):4326-4335 Blood. 2002;100(13):4372-4380 N Engl J Med. 1999;341(14):1051-1062 Nature. 2012;485(7397):260-263

Prognostic Value of FLT3 in AML

• FLT3 mutations are unstable and can be gained or lost during disease progression

 Testing for FLT3 mutations at multiple time points is important as the status can change from the initial diagnosis to the relapse and refractory states of the disease

> Cloos et al. DOI: 10.1038/sj.leu.2404246 Palmisano et al. DOI: 10.3324/haematol.11202 Warren et al. DOI: 10.1038/modpathol.2012.88; published online 8 June 2012



Confidential and Proprietary Information. Unauthorized use, replication or dissemination is prohibited.

Prognostic Value of FLT3 in AML

Changes in FLT3 mutation status is an important prognostic factor

• Study of 3355 patients

Warren et al. DOI: 10.1038/modpathol.2012.88; published online 8 June 2012

International Guidelines

FLT3 testing is recommended as part of international AML guidelines

ELIN LeukemiaNet

(doi: 10.6004/jnccn.2019.0028)

Risk category*	Genetic abnormality			
Favorable	t(8;21)(q22;q22.1); RUNX1-RUNX1T1			
	inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11			
	Mutated NPM1 without FLT3-ITD or with FLT3-ITD ^{low} †			
	Biallelic mutated CEBPA			
Intermediate	Mutated NPM1 and FLT3-ITD ^{high} †			
	Wild-type NPM1 without FLT3-ITD or with FLT3-ITD ^{low} † (without			
	adverse-risk genetic lesions)			
	t(9;11)(p21.3;q23.3); MLLT3-KMT2A‡			
	Cytogenetic abnormalities not classified as favorable or adverse			
Adverse	t(6;9)(p23;q34.1); DEK-NUP214			
	t(v;11q23.3); <i>KMT2A</i> rearranged			
	t(9;22)(q34.1;q11.2); BCR-ABL1			
	inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM(EVI1)			
	-5 or del(5q); -7; -17/abn(17p)			
	Complex karyotype,§ monosomal karyotypell			
	Wild-type NPM1 and FLT3-ITD ^{high} †			
	Mutated RUNX1¶			
	Mutated ASXL1¶			
	Mutated TP53#			

Blood. 2017;129(4):424-447

The Role of Allelic Ratio in AML

Different opinions in the clinical community

Low allelic ratio (AR) (<0.5); High AR(\geq 0.5)

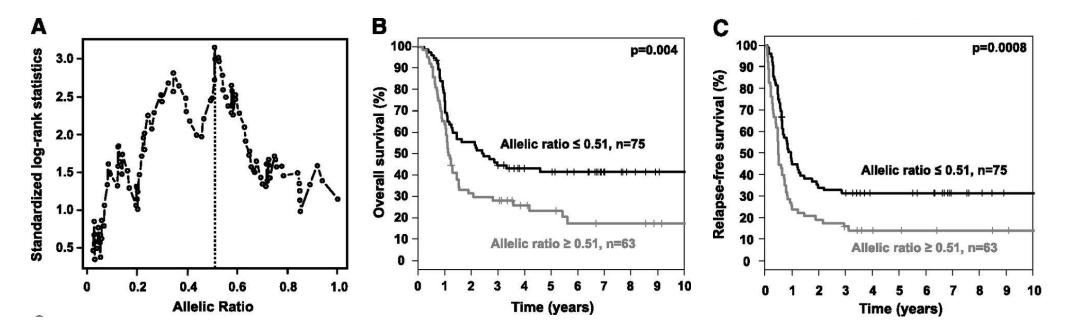
"Regardless of *FLT3* AR, patients should be considered for bone marrow transplant"

"Though recent studies indicate that AML with NPM1 mutation and *FLT3*-ITD low AR may have a more favorable prognosis and patients should not routinely be assigned to allogeneic HCT"

> **Note:** All recommendations are category 2A unless otherwise indicated. **Clinical Trials:** NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

> > NCCN Guidelines / Acute Myeloid Leukemia / Version 2020.3

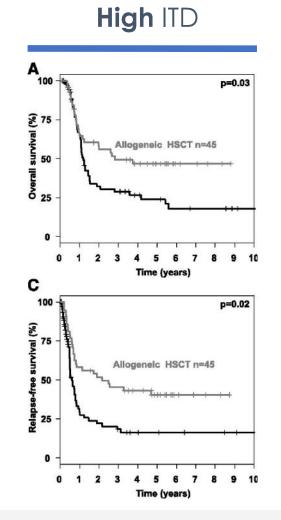
Confidential and Proprietary Information. Unauthorized use, replication or dissemination is prohibited. Determination of high/low classification for ITD SR has not been validated for Invivoscribe products.

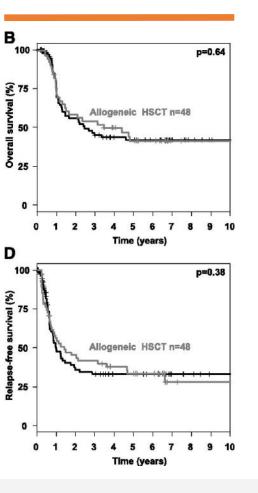


ELN Studies Cited for AR Criteria

Publication (Trial)	Date	First Author	ITD High Low Cutoff
Blood (UK MRC AML)	2008	Gale	< 25% Low 25% – 50% Int. >50% High
Blood (CETLAM)	2013	Pratcorona	High > 0.5
Blood (UK MRC AML)	2014	Linch	5%-25% Low 25%-50% Int. >50% High
Blood (AMLSG)	2014	Schlenk	High > 0.51
NEJM (Ratify)	2017	Stone	High > 0.7

Differential impact of allelic ratio and insertion site in *FLT3*-ITD-positive AML with respect to allogeneic transplantation




Richard F. Schlenk, Sabine Kayser, Lars Bullinger, Guido Kobbe, Jochen Casper, Mark Ringhoffer, Gerhard Held, Peter Brossart, Michael Lübbert, Helmut R. Salih, Thomas Kindler, Heinz A. Horst, Gerald Wulf, David Nachbaur, Katharina Götze, Alexander Lamparter, Peter Paschka, Verena I. Gaidzik, Veronica Teleanu, Daniela Späth, Axel Benner, Jürgen Krauter, Arnold Ganser, Hartmut Döhner and Konstanze Döhner for the German-Austrian AML Study Group. https://doi.org/10.1182/blood-2014-05-578070

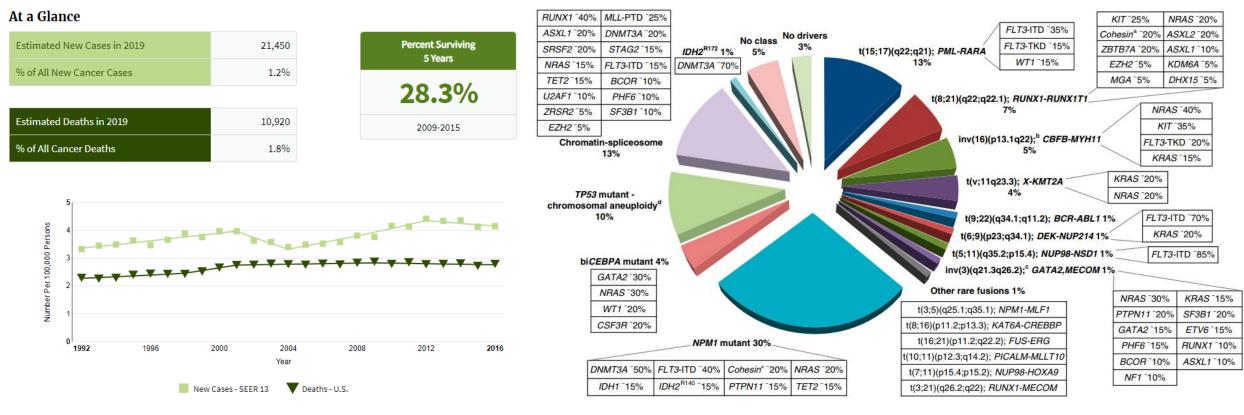
Impact of FLT3 AR in OS

AR in *FLT3*-ITD–positive AMLs may be useful as a predictive marker indicating whether an alloHSCT in first CR is beneficial in terms of overall outcome.

Low ITD

https://doi.org/10.1182/blood-2014-05-578070

Winvivoscribe Improving Lives with Precision Diagnostics


Confidential and Proprietary Information. Unauthorized use, replication or dissemination is prohibited. Determination of high/low classification for ITD SR has not been validated for Invivoscribe products.

Prevalence of AML and Mutations

NATIONAL CANCER INSTITUTE

Surveillance, Epidemiology, and End Results Program

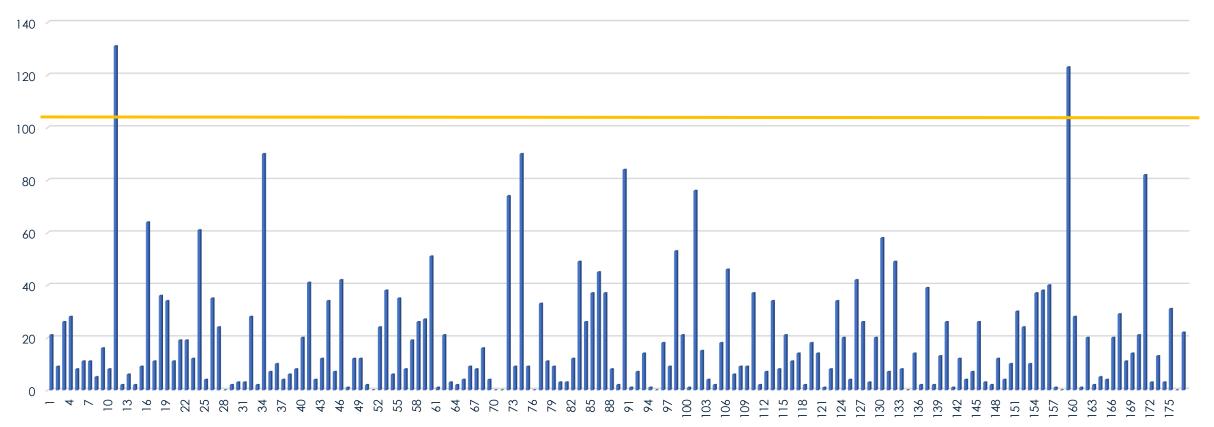
21,450 new cases x (0.30 NPM1mut) x (0.40 FLT3 ITD) = 2,574 new cases/year

Blood. 2017; 129(4):424-447

Confidential and Proprietary Information. Unauthorized use, replication or dissemination is prohibited. Determination of high/low classification for ITD SR has not been validated for Invivoscribe products.

Number of Transplants in AML

US Transplant Data by Center Report – AML 2017



Total: 3363

Transplants by Center 2017

