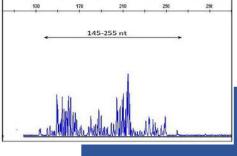
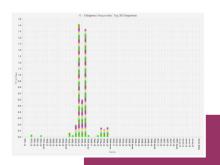


Molecular testing of clonality

Current methods are effective, but limited


- Low throughput
- Low sensitivity
- Difficult to interpret
- Cannot readily differentiate between clonal populations that have the same PCR product
- Not appropriate for MRD research

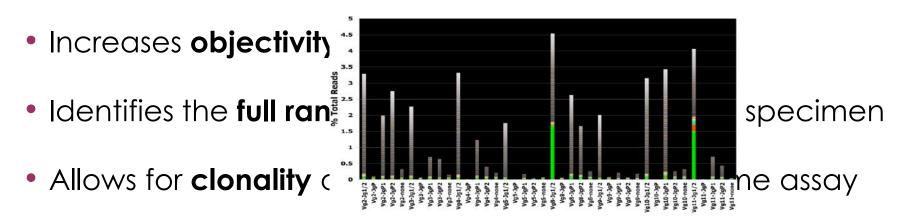
There is a need for improvement


The Next Step in Clonality Assessment

agment Analysis

- Reduced testing time (1-2 days)
- Base pair resolution
 Sequences obtained by cloning & Sanger sequencing
- Custom assay required to track clones (MRD)
- Widely used method many references available
- Can be hard to interpret and is subjective

NGS


- Increased objectivity
 specific sequence provided
- Reduced false positives non-specific bands filtered
- Increased sensitivity
- Same reagents & workflow for the study of clonality, SHM, & MRD
- Less analysis time required

Advantages of NGS testing

• Determines the **DNA sequence** of clonal rearrangements

Allows tracking of clonal populations with the same reagents and workflow

Next Generation Sequencing

A molecular analysis revolution

- Next Generation Sequencing
 - > Sequence millions of nucleic acid strands simultaneously
 - Very sensitive
 - > High degree of multiplexing look at many targets simultaneously
- Impressive data analysis requirements
 - > Has rapidly increased the field of bioinformatics
 - Is typically highly complex
- Has touched all areas of life and medical sciences and changed how we understand the world

Next Generation Sequencing

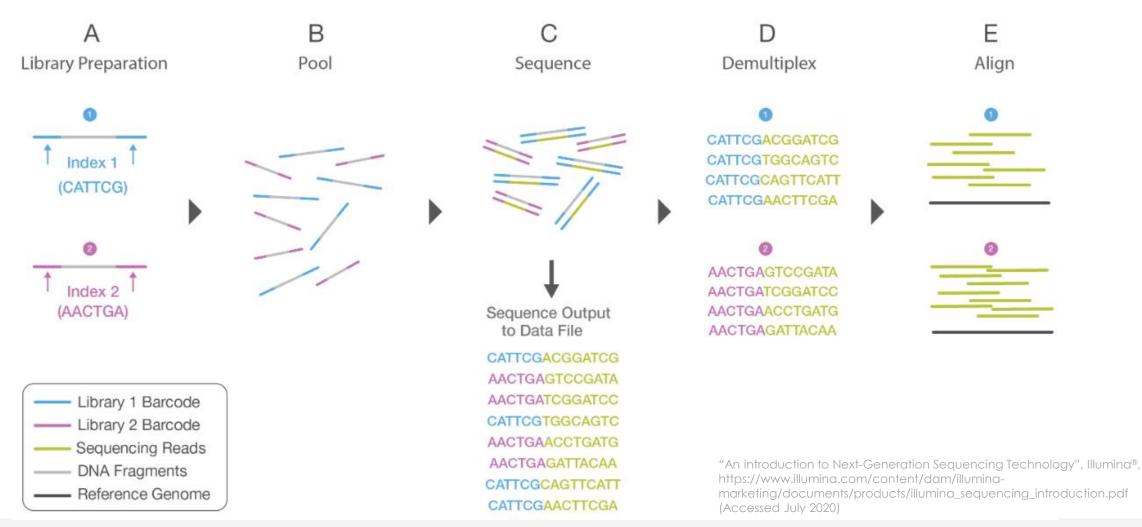
Vocabulary

- Adapters short nucleotide sequences
 - > Allow amplicons to bind to sequencing component (bead of flow cell)
 - Use to amplify adapter-ligated DNA fragments only

Indexes/Indices

- Each DNA fragment in a sample is 'tagged' with a short sequence specific to that sample
- Indexes/Indices are used after sequencing to separate fragments into different samples

Library


- Collection of amplicons with indexed adapters
- Can be 'pooled' with other libraries for multiplex sequencing

NGS Workflow

"Typical" workflow

Available Assays & Software

B-Cell

- IGHV Leader SHM*
- IGH FR1/2/3 Combo
- IGH FR1
- IGH FR2
- IGH FR3
- IGK

T-Cell

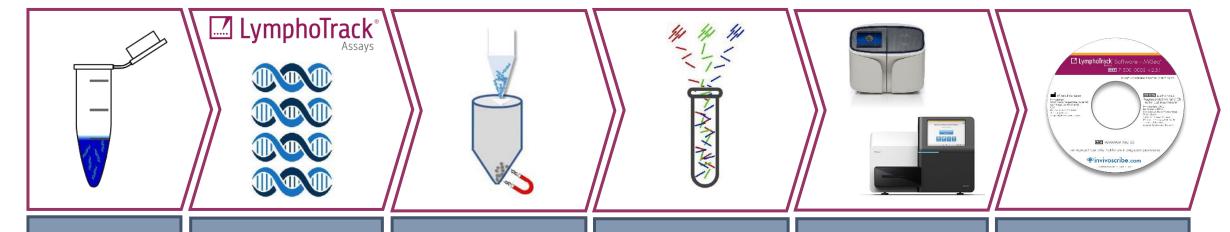
- TRG
- TRB*

Software

- LymphoTrack® Software
- MRD Software Research Use Only (RUO)

*MiSeq Only

LymphoTrack® Assays


- One-Step PCR Master Mixes
- Multiplexing Reduces Costs by Combining:
 - Multiple Samples up to 12 (Ion S5/PGM™) & 24 (MiSeq®)
 - Multiple Invivoscribe Assays up to 72 or 168 Samples
 - Other Platform-Specific Assays
- Unparalleled Sensitivity
 - > Unparalleled clonality detection with the ability to identify and track the specific sequence of clonal populations for MRD research studies.
- Analysis Software Package Included

LymphoTrack® Workflow

Easy Workflow

Extracted DNA

Generate
libraries using
the one-step
PCR
LymphoTrack®
Kits

Purify PCR products using AMPure XP beads Quantify
libraries, pool
and check
concentration
(e.g. qPCR or
BioAnalyzer)

Sequence
libraries using
lon Torrent™
or Illumina®
MiSeq®
technology

Analyze results
locally with
included
LymphoTrack®
Software

Comprehensive menu

Available Sequencing Platforms	Miseq®	lon S5™	Ion PGM TM	
Menu	B-Cell IGHV (Leader) IGH FR 1 IGH FR2 IGH FR3 IGK T-Cell TRG TRB	B-Cell IGH FR 1 IGH FR2 IGH FR3 IGK T-Cell TRG	B-Cell IGH FR1 IGH FR2 IGH FR3 IGK T-Cell TRG	
Kit size(s)	8-index or 24-index kits	12 barcodes	12 barcodes	
Validated Sequencing Kits	V2 (2 x 150 bp) V2 (2 x 250 bp) V3 (2 x 300 bp)	Ion 520 TM Ion 530 TM	lon 316™ v2 BC lon 318™ v2 BC	

Included in the LymphoTrack® Kits

Library preparation and analysis

- Kit contents
 - > 1 **mastermix** per index/barcode
 - Required controls
 - LymphoTrack® analysis software

• Kit sizes:

Platform	Kit Type	# of indices/ barcodes		
	Kit A	8	5	40
MiSeq®	Panel	24	5	120
	Panel B	24	5	120
S5/PGM TM	All	12	5	60

*Only available for IGH FR1

LymphoTrack® Software

Local, offline and easy to use

- Included with each LymphoTrack[®] kit
- Available for both Ion S5/PGMTM and Illumina[®] MiSeq[®] platforms
- Does not require bioinformatics personnel
- Can run on most standard windows platforms
- Utilizes FASTQ files
- Fast results reported in individual PDF reports or in Excel

Summary of Sequencing Workflows

Summary of LymphoTrack* Assays - S5/PGM								
	IGH FR1	IGH FR2	IGH FR3	IGK	TRG			
Average Target Size (bp)	295	243	103	222	147			
Average Amplicon Size Including Target, Index, and Adaptors (bp)	430	370	240	390	280			
DNA Input (ng/PCR)	50							
Validated PCR Cycles	29							
Purification Method	AMPure XP Beads (1.8:1 ratio)							
Quantification Method		Agilent 210	00 Bioanalyzer or Perkin Elmer Lo	abChip® GX				
Planned Run Setting for Flows**			850		500 or 850			
Recommended Sequencing Kit**	For Ion S5 TM use: Ion 520 TM & Ion 530 TM Kit - OT2 or Ion 510 TM & 520 TM & Ion 530 TM Kit - Chef For Ion PGM TM use: Ion PGM TM Hi-Q TM View OT2 Kit & Ion PGM TM Hi-Q TM View Sequencing Kit & Ion PGM TM Wash 2 Bottle Kit							

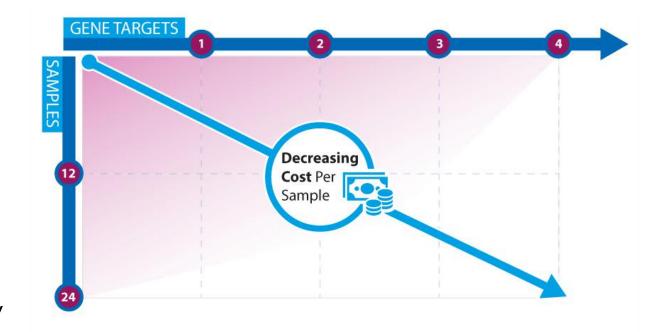
Summary of Sequencing Workflows

Summary of Lymph	Summary of LymphoTrack* Assays - Miseq									
	IGHV Leader SHM	IGH FR1	IGH FR2	IGH FR3	IGK	TRG	TRB			
Target Size (bp)	483	295	243	104	222	147	290			
Amplicon Size Including Target, Index, and Adaptors (bp)	660	450 390		260	410	300	400			
DNA Input (ng/PCR)		50								
Validated PCR Cycles	32	32 29								
Purification Method		AMPure XP Beads AMPu (1:1 rafio) (0								
Quantification Method				KAPA qPCR						
Sample Sheet Settings**	Cycles Read1: 301 Cycles Read2: 301		ead1: 251 ead2: 251	Cycles Read1: 151 Cycles Read2: 151	Cycles Read1: 251 Cycles Read2: 251	Cycles Read1: 151 Cycles Read2: 151	Cycles Read1: 251 Cycles Read2: 251			
Recommended Sequencing Kit**	MiSeq v3 Reagent (600-cycle)	MiSeq v2 Reagent (500-cycle) or MiSeq v3 Reagent (600-cycle)		MiSeq v2 Reagent (300-cycle) or MiSeq v2 Reagent (500-cycle) or MiSeq v3 Reagent (600-cycle)	MiSeq v2 Reagent (500-cycle) or MiSeq v3 Reagent (600-cycle)	MiSeq v2 Reagent (300-cycle) or MiSeq v2 Reagent (500-cycle) or MiSeq v3 Reagent (600-cycle)	MiSeq v2 Reagent (500-cycle) or MiSeq v3 Reagent (600-cycle)			

Sequencing Instruments

Available Sequencing Platforms	MiSeq®	lon S5™	Ion PGM TM		
Run Time	36-56 Hours	6-17.5 Hours	5-8 Hours		
Reads Per Run	15 million (V2 standard) 25 million (V3)	3-5 million (Ion 520 chip) 15-20 million (Ion 530 chip)	2-3 million (316 chip) 4-5.5 million (318 chip)		
Read Lengths	V2 (2 x 150 bp) V2 (2 x 250 bp) V3 (2 x 300 bp)	lon 520™ (400 bp) lon 530™ (400 bp)	lon 316™ v2 BC (400 bp) lon 318™ v2 BC (400 bp)		

LymphoTrack® – Experiment Planning



Key Factors

- How many samples?
- How many targets?
- Which targets?

These will determine:

- # of indices/barcodes needed
- MiSeq[®] or Ion Torrent[™] chemistry
- Cost per target and per sample

Increasing Capture Rate

Easy to combine:

- IGH and IGK
- TRB and TRG

Advantages of Combining Targets:

- Highest capture rate
- Higher confidence

B-Cell Targets

	IGH (FR1, 2 & 3)	IGK (Vk – Jk & Kde)	IGH+IGK
MCL%)	100	100	100
B-CLL/SLL(%)	100	100	100
FL(%)	84	84	100
MZL(%)	87	83	97
DLBCL(%)	79	80	96
Total(%)	88	88	98

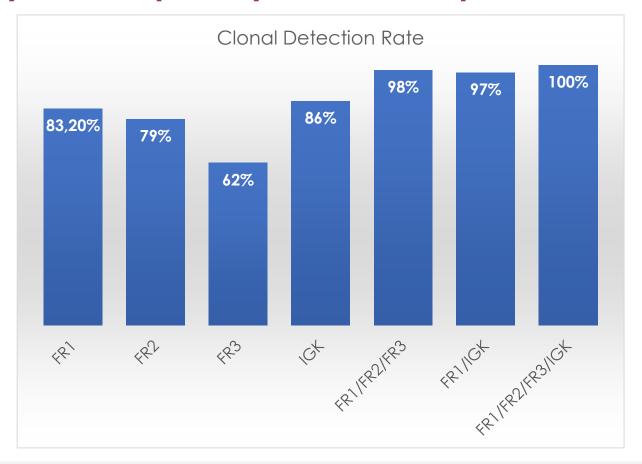
PAS Evans et al., Leukemia. 2006 21:201-206.

T-Cell Targets

	TRB	TRG	TRB+TRG
T-PLL(%)	100	94	100
T-LGL(%)	96	96	100
PTCL-U(%)	98	94	100
AILT(%)	89	92	95
ALCL(%)	74	74	79*
Total(%)	91	89	94 (99)*

J.J.M. van Krieken et al. Leukemia. 2007 21:201-206.

Testing Complementary Gene Targets in Parallel Improves Confidence!


*Approximately 20–25% of ALCL are known to have no TCR gene rearrangements and are defined as null ALCL; J.J.M. van Krieken et al. Leukemia, 2007 21:201-206.

Increasing Detection Rate

Example of how using multiple targets can increase the detection rate in clonality in multiple myeloma samples

"Comparison of LymphoTrack® Assays - MiSeq® and Flow Cytometry for Clonality and Minimum Residual Disease Assessment in Multiple Myeloma", InvivoScribe, EHA Meeting 2018

Multiplexing

Platform	Sequencing Kit	LymphoTrack® Kits	Number of Targets
	V2 (2 x 150 bp)	FR3 and TRG	Up to 2 targets
Illumina® MiSeq®	V2 (2 x 250 bp)	FR1, FR2, FR3, IGK, TRB and TRG	Up to 4 targets*
	V3 (2 x 300 bp)	IGHV, FR1, FR2, FR3, IGK, TRB and TRG	Up to 7 targets
	lon 520	FR1, FR2, FR3, IGK and TRG	Up to 5 targets
Ion S5™ and	Ion 530	FR1, FR2, FR3, IGK and TRG	Up to 5 targets
Ion PGM™	lon 316	FR1, FR2, FR3, IGK and TRG	Up to 3 targets
	lon 318	FR1, FR2, FR3, IGK and TRG	Up to 5 targets

* Due to capacity of the V2 Sequencing Kit it is possible to sequence only up to 4 targets.

Multiplexing

- Determine the Targets to be tested & necessary Sequencing Kit
 - Multiple Targets can be multiplexed from any LymphoTrack® B- and T-cell kit
 - Select the MiSeq® or S5/PGMTM Sequencing kit compatible with the largest amplicon in the multiplex
- Calculate the # of Reads available per Sample
 - = # Total reads available
 - ÷ # Samples
 - ÷ # Targets per sample
 - # Reads per Target, Per Sample
- 3 Compare with the minimum # of Reads desired
 - # of Reads per Target

Multiplexing

4 Assign one Index per Sample

- Assign the same index per Sample across different Targets
 - e.g. Sample A Index 01 for IGH FR1, Index 01 for TRG, etc.
 - e.g. Sample B Index 02 for IGH FR1, Index 02 for TRG, etc.
- A unique index should also be assigned to the Positive and Negative Controls
 - e.g. Positive Control Index 08 for IGH FR1, Index 08 for TRG, etc.
 - e.g. Negative Control Index 09 for IGH FR1, Index 09 for TRG, etc.
- NTC does not need to be sequenced so any index can be used
 - > e.g. NTC Index 08 for IGH FR1, Index 08 for TRG, etc.

Multiplexing Example

- Determine the Targets to be tested & necessary Sequencing Kit
 - Targets: We will multiplex IGH Leader, IGH FR1, FR2, FR3, IGK, TRG and TRB
 - Select **Sequencing kit**: *IGH* Leader is the largest target and requires as minimum a MiSeq® v3 Flow Cell (25 Million reads available).
- Calculate the # of Reads available per Sample
 - = # Total reads available
 - ÷ # Samples
 - ÷ # Targets per sample

Reads per Target, Per Sample

20,000,000 Reads*

÷ 24 Samples

7 Targets

~119,000 Reads per Target, per Sample

- 3 Compare with the minimum # of Reads desired
 - # of Reads per Target

* Only 80% of 25 Million reads are considered = 20 Million reads as loading might not be perfect

Multiplexing Example

Assign one Index per Sample

- Assign the same index per Sample across different Targets
- A unique index should also be assigned to the Positive and Negative Controls
- NTC does not need to be sequenced so any index can be used

Index	IGH FR1	TRG	Target X
1	Index 01	Index 01	Index 01
	Sample A	Sample A	Sample A
2	Index 02	Index 02	Index 02
	Sample B	Sample B	Sample B
3	Index 03	Index 03	Index 03
	Sample C	Sample C	Sample C
4	Index 04	Index 04	Index 04
	PosCtrl	PosCtrl	PosCtrl
5	Index 05	Index 05	Index 05
	NegCtrl	NegCtrl	NegCtrl
6	Index 05	Index 05	Index 05
	NTC	NTC	NTC

Multiplexing - Summary

Easily maximize run efficiency

- Use same index/barcode across multiple targets
- The LymphoTrack® software can assign all reads to the correct target
- MiSeq® example

Index	IGHV	FR1	FR2	FR3	IGK	TRG	TRB
1	NC						
2	PC						
3	SHM PC	Sample 1	Sample 1	Sample 1	Sample 1	Sample 2	Sample 2
4	Sample 3	Sample 4	Sample 4	Sample 4	Sample 4	Sample 5	Sample 5

Up to 24 indices

Possible to generate up to 153 sample results in one run (v3 flow cell)

The following NGS instruments are suitable for LymphoTrack® except,

- 1. Illumina® MiSeq®
- 2. Ion PGM™
- 3. Illumina® NextSeq®
- 4. Ion \$5™
- 5. Illumina[®] MiniSeq™

Somatic hypermutation analysis can be done using the Ion Torrent™ platform?

- 1. Yes, using FR1
- 2. Yes, using IGK
- 3. No

Which kits can be analyzed on the Illumina® MiSeq® using the v2 (2x250) flow cell?

- 1. TRB and TRG
- 2. FR1, FR2, FR3, and IGK
- 3. FR3 and TRG
- 4. FR1, FR2, FR3, IGK, TRG and TRB

Which of the following flow cells has not been validated for the Illumina[®] MiSeq[®] instrument by Invivoscribe?

- 1. V3, 2x300 bp
- 2. V2, 2x250 bp
- 3. V2, 2x150 bp
- 4. V2 nano, 2x250 bp

Which library quantitation methods are validated for the LymphoTrack[®] MiSeq[®] kits?

- 1. Bioanalyzer
- 2. Kapa qPCR kits
- 3. Qubit
- 4. Tape station

LymphoTrack® Software

Data analysis and Interpretation

Analysis Workflow

FASTQ Files from MiSeq®, S5™ or PGM™

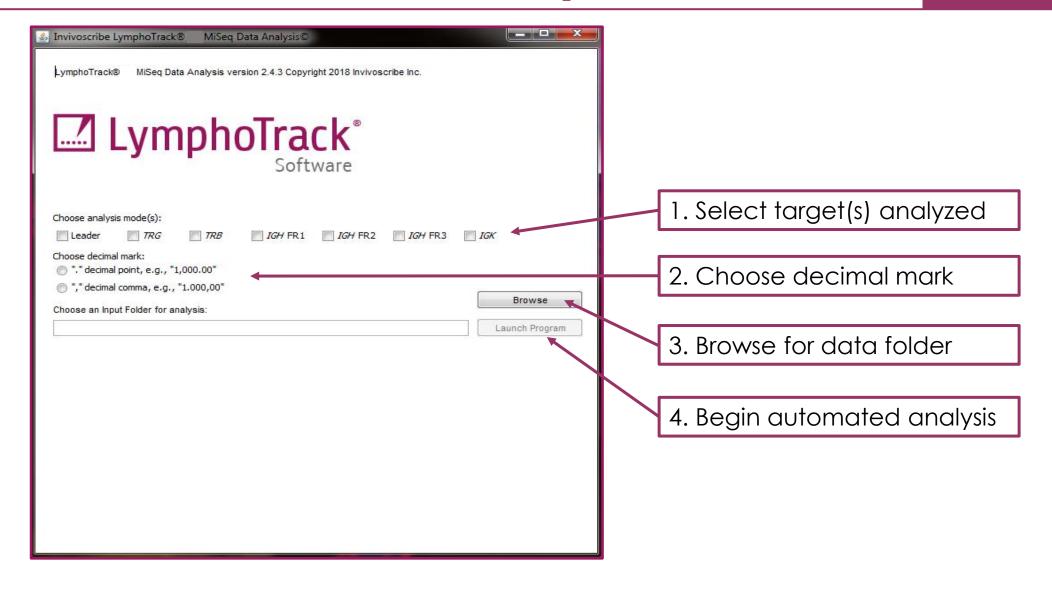
LymphoTrack® Data Analysis Software

LymphoTrack[®]
Data Visualization

Data Interpretation

Save FASTQ files in a designated folder

Open LymphoTrack® software and select analysis to be carried out


All results are summarized in PDF files or can be viewed in Excel Interpret each report for both controls and samples

- Computer requirements
 - > 64 bit Windows, 4GB RAM (or more), Intel Core Duo 2 or newer CPU
 - > Java 8 (64 bit) or newer
 - PDF reader
 - CD-ROM drive to access the program on supplied CD

Analyze Data in Just 4 Steps

Data Output – PDF Report

Merged Read Summary

- All sequences that differ by only 1 or 2 bp are merged
 - Accounts for library prep and sequencing errors
- Shows read count after final analysis
- Full sequence can be copied from PDF report

LymphoTrack Report for assay LEADER

Sample name: Leader_positive_S23_L001_001_combined

Total Read Count: 474947

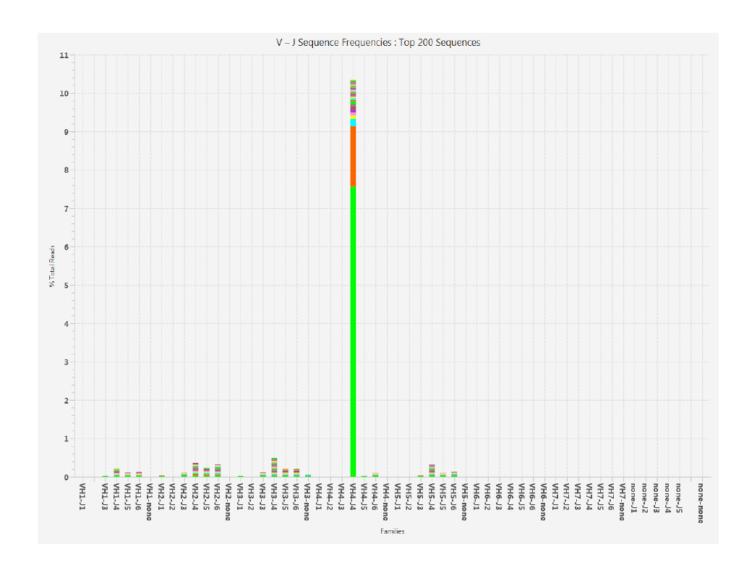
IndexQ30: 87.88

Caution: Do not edit fields and save.

Top 10 Merged Read Summary

Rank	Sequence	Length	Merge count	V-gene	J-gene	% total reads	Cumulativ e %	Mutation rate to partial V- gene (%)	In-frame (Y/N)	No Stop codon (Y/N)	V- coverage	CDR3 Seq
1	TTCTCGTGGTGG(455	50248	IGHV4- 59_08	IGHJ4_02	10.58	10.58	11.26	Y	Y	98.63	GCGAGACGGAGC
2	CTGCTACTGACTG	319	192	IGHV2- 70_10	IGHJ4_02	0.04	10.62	4.32	n/a	N	35.55	not found
3	CTGCTGCTGACCA	466	175	IGHV2- 5_01	IGHJ5_01	0.04	10.66	6.62	Y	Y	100.00	GCACACAGACCG
4	CTGCTGCTGACCA	457	162	IGHV2- 5_05	16HJ6_02	0.03	10.69	2.99	Y	Y	99.67	GCACACAGATACT
5	CTGCTGCTGACCA	474	154	IGHV2- 5_05	IGHJ4_02	0.03	10.72	3.99	Y	Y	99.67	GCACACAGATACT
6	CTGCTGCTGACCA	454	150	IGHV2- 5_10	IGHJ5_02	0.03	10.76	11.78	Y	Y	98.99	GCATATGGTGTAA
7	CTGCTGCTGACCA	400	139	IGHV2- 5_01	IGHJ4_02	0.03	10.78	1.32	Y	Y	97.68	GCACTCGCGACAC
8	стссссстсстсс	466	139	IGHV5- 51_01	IGHJ4_02	0.03	10.81	7.09	Y	Y	99.32	GCGAGATACTAT
9	CTGCTACTGACTG	490	137	IGHV2- 70_10	IGHJ3_02	0.03	10.84	0.66	Y	Y	99.34	GCACGGATTCCTC
	CTGCTGCTGACCA		135	IGHV2- 5_10	IGHJ6_02	0.03	10.87	3.70	Y	Y	98.99	GCATACACTTGTT

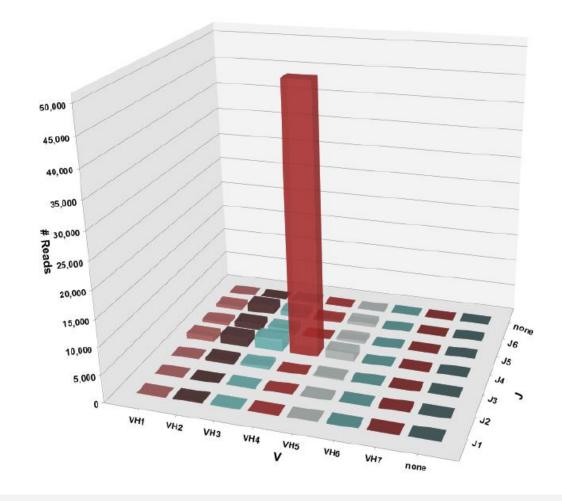
TTCTCTGGGTTCTCACTCACCACTAGGGGATTGGGTGTGGCCTGGATCCGTCAGCCCCCAGGAAAGGCCCTGGAGTGGCTTGCACTCATTTTTTGGGATGATA
AACGCTACAGCCCATCTCTGAAGAGCAGACTCACCATCACCAAGGACGCCTCCAAGAACCAGGTGGTCCTTACAATGACCAACATGGACCCTGTAGACACAGCCAC
CTATTACTGTGCACACAGGGGGAGCTACCAAGGTGGGACTACCTATTACCCACACTACTATTTTGACTACTGGGGCCAGGGAACCCT



Data Output – PDF Report

Sequence Frequency Graph

- Displays rearrangements organized by families
- Based on top 200 sequences
- Solid color bar pieces represent one clonal sequence
- Stacked bars are from the same family, but may or may not be the same clone


Data Output - PDF Report

V-J Usage Graph

- Displays V-gene and J-gene recombinations
- Bar is not based on a particular clone
- Frequency of a pair of families based on amount of reads

V-J Usage: Top 200 Sequences

Data Output – PDF Report

Top 200 Read Summary

- Unmerged read summary of top 200 sequences
- Top sequences may represent same clone and are merged together downstream
- Fewer than 200 reads may be displayed depending on the sample

Top 200 Read Summary

Rank	Sequence	Length	Raw count	V-gene	J-gene	% total reads	Cumulativ e %	Mutation rate to V- gene (%)	In-frame (Y/N)	No Stop codon (Y/N)	V- coverage	CDR3 seq
1	ттстсствете	455	35909	IGHV4- 59_08	IGHJ4_02	7.56	7.56	11.26	Y	Y	98.63	GCGAGACGGAGC
2	TTCTCGTGGTGGC	455	7484	IGHV4- 59_08	IGHJ4_02	1.58	9.14	11.60	Υ	Y	98.63	GCGAGACGGAGC
3	ттстсствете		911	IGHV4- 59_08	IGHJ4_02	0.19	9.33	11.60	Y	Υ	98.63	GCGAGACGGAGC
4	ттстсствете	455	395	IGHV4- 59_08	IGHJ4_02	0.08	9.41	11.60	Y	Y	98.63	GCGAGACGGAGC
5	ттстсствете	455	386	IGHV4- 59_08	IGHJ4_02	0.08	9.49	11.26	Y	Y	98.63	not found
6	ттстсствете	455	370	IGHV4- 59_08	IGHJ4_02	0.08	9.57	11.26	Y	Y	98.63	not found
7	ттстсствете	455	366	IGHV4- 59_08	IGHJ4_03	0.08	9.65	11.26	Y	Y	98.63	GCGAGACGGAGC
8	ттстсствете	455	318	IGHV4- 59_08	IGHJ4_02	0.07	9.71	11.60	Y	Y	98.63	GCGAGACGGAGC
9	ттстсствете	455	310	IGHV4- 59_08	IGHJ4_02	0.07	9.78	11.26	Y	Y	98.63	GCGAGACGGAGC
10	ттстсствете	455	194	IGHV4- 59_08	IGHJ4_02	0.04	9.82	11.60	Y	Y	98.63	GCGAGACGGAGC
11	CTGCTACTGACTG	319	192	IGHV2- 70_10	IGHJ4_02	0.04	9.86	4.32	n/a	N	35.55	not found
12	TTCTCGTGGTGGC	455	183	IGHV4-	IGHJ4_02	0.04	9.90	11.95	Υ	Y	98.63	GCGAGACGGAGC

Data Output – IGHV

Top 10 Merged Read Summary

 The Read Summary tab only shows the top 10 reads after merging with the top 500 reads that differ in 1 or 2 nucleotides

Note: This analysis is also possible with *IGH FR1*

LymphoTrack Report for assay LEADER

Sample name: Leader_positive_S23_L001_001_combined

Total Read Count: 474947

IndexQ30: 87.88

Caution: Do not edit fields and save.

Top 10 Merged Read Summary

Rank	Sequence	Length	Merge count	V-gene	J-gene	% total reads	Cumulativ e %	Mutation rate to partial V- gene (%)	In-frame (Y/N)	No Stop codon (Y/N)	V- coverage	CDR3 Seq
1	ттстсствете	455	50248	IGHV4- 59_08	IGHJ4_02	10.58	10.58	11.26	Y	Y	98.63	GCGAGACGGAGC
2	CTGCTACTGACTG	040	192	IGHV2- 70_10	IGHJ4_02	0.04	10.62	4.32	n/a	N	35.55	not found
3	CTGCTGCTGACCA	466	175	IGHV2- 5_01	IGHJ5_01	0.04	10.66	6.62	Y	Y	100.00	GCACACAGACCG
4	CTGCTGCTGACCA	457	162	IGHV2- 5_05	IGHJ6_02	0.03	10.69	2.99	Y	Y	99.67	GCACACAGATACT
	CTGCTGCTGACCA		154	IGHV2- 5_05	IGHJ4_02	0.03	10.72	3.99	Y	Y	99.67	GCACACAGATACT
	CTGCTGCTGACCA		150	IGHV2- 5_10	IGHJ5_02	0.03	10.76	11.78	Y	Y	98.99	GCATATGGTGTAA
	CTGCTGCTGACCA		139	IGHV2- 5_01	IGHJ4_02	0.03	10.78	1.32	Y	Y	97.68	GCACTCGCGACAC
	стевеестесте		139	IGHV5- 51_01	IGHJ4_02	0.03	10.81	7.09	Y	Y	99.32	GCGAGATACTAT
9	CTGCTACTGACTG		137	IGHV2- 70_10	IGHJ3_02	0.03	10.84	0.66	Y	Y	99.34	GCACGGATTCCTC
10	CTGCTGCTGACCA	478	135	IGHV2- 5_10	IGHJ6_02	0.03	10.87	3.70	Y	Y	98.99	GCATACACTTGTT

Expected Values IGHV SHM

LymphoTrack Report for assay LEADER

Sample name: Leader_positive_S23_L001_001_combined

Total Read Count: 474947

IndexQ30: 87.88

Caution: Do not edit fields and save.

Top 10 Merged Read Summary

Rank	Sequence	Length	Merge count	V-gene	J-gene	% total reads	Cumulativ e %	Mutation rate to partial V- gene (%)	In-frame (Y/N)	No Stop codon (Y/N)	V- coverage	CDR3 Seq
1	ттстсстсстсстс	455	50248	IGHV4- 59_08	IGHJ4_02	10.58	10.58	11.26	Y	Y	98.63	GCGAGACGGAGC
2	CTGCTACTGACTG	319	192	IGHV2- 70_10	IGHJ4_02	0.04	10.62	4.32	n/a	N	35.55	not found
3	CTGCTGCTGACCA	466	175	IGHV2- 5_01	IGHJ5_01	0.04	10.66	6.62	Y	Y	100.00	GCACACAGACCG(
4	CTGCTGCTGACCA	457	162	IGHV2- 5_05	IGHJ6_02	0.03	10.69	2.99	Y	Y	99.67	GCACACAGATACT
5	CTGCTGCTGACCA	474	154	IGHV2- 5_05	IGHJ4_02	0.03	10.72	3.99	Y	Y	99.67	GCACACAGATACT
6	CTGCTGCTGACCA	454	150	IGHV2- 5_10	IGHJ5_02	0.03	10.76	11.78	Y	Y	98.99	GCATATGGTGTAA
7	CTGCTGCTGACCA	469	139	IGHV2- 5_01	IGHJ4_02	0.03	10.78	1.32	Y	Y	97.68	GCACTCGCGACAC
8	стедесетесте	466	139	IGHV5- 51_01	IGHJ4_02	0.03	10.81	7.09	Y	Y	99.32	GCGAGATACTATT
9	CTGCTACTGACTG	490	137	IGHV2- 70_10	IGHJ3_02	0.03	10.84	0.66	Y	Y		GCACGGATTCCTG
	CTGCTGCTGACCA		135	IGHV2- 5_10	IGHJ6_02	0.03	10.87	3.70	Y	Y	98.99	GCATACACTTGTT

- IGH Positive Control top % reads ≥ 2.5%
- NGS Negative Control top % reads < 1.0%
- IGH SHM Positive Control (4-088-0008, can be purchased separately) top % reads ≥ 2.5%
- IGH SHM Positive Control mutation rate ≥ 2.0%
- MiSeq Run Validity Q30 > 70% for v3 (2x301)

LymphoTrack[®] FAQ

- Will the software work on my computer?
 - The software requires Microsoft Windows 64 bit and Excel
- Do I always need to run the positive & negative controls?
 - Yes, these controls are always recommended & they are the only way our support team can guarantee the assay preformed correctly and provide troubleshooting tips to customers
- Two top reasons users have software difficulties:
 - > Files named incorrectly. For the MiSeq® our software only recognizes filenames that contain the following characters: A-Z, a-z, 0-9, _ (underscore), (hyphen)
 - > Files from software CD were not copied on the computer or files are zipped
- Reason for low Q30 score on the MiSeq®
 - > The Q30 score assesses the flow cell loading. Low scores likely indicate overloading or insufficient DNA quality
 - \Rightarrow Q30 \geq 75% for v2 (2x250); Q30 \geq 70% for v3 (2x300)

Take Home Message

- Broad menu of standardized kits for both B- and T-cell analysis with included bioinformatics package
- CE-IVD marked kits available
- Higher sensitivity and greater accuracy than traditional methods
- Be part of the community of labs and benefit from great publications and knowhow
- LymphoTrack[®] kits are a great solution for labs that wish to take the next step in their clonality analysis

LymphoTrack® Assays

Full featured solution

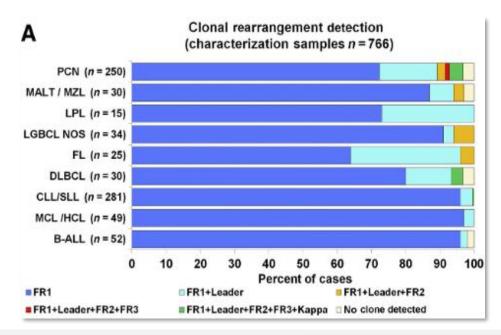
- Designed for MiSeq[®], Ion PGMTM & Ion S5TM
- One-Step PCR Master Mixes low contamination risk
- Easy Workflow for the study of Clonality, MRD and SHM analysis
- Flexibility/Scalability
- Multiplexing Targets & Applications
- Included Bioinformatics Software Package
- Comprehensive Technical Support

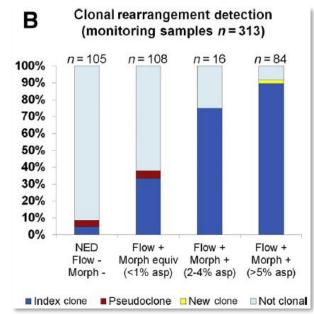
Name the 4 steps needed to start the analysis in the LymphoTrack® software:

- 1. Log in with username and password
- 2. Select targets
- 3. Choose decimal format
- 4. Browse to BAM files
- 5. Browse to FASTQ files
- 6. Select 'Launch Program'

Which of the following are requirements for running the LymphoTrack® software:

- 1. Windows 64 bit
- 2. Java 8, 64 bit or newer
- 3. PDF Reader
- 4. CD-Rom Drive
- 5. All of the above

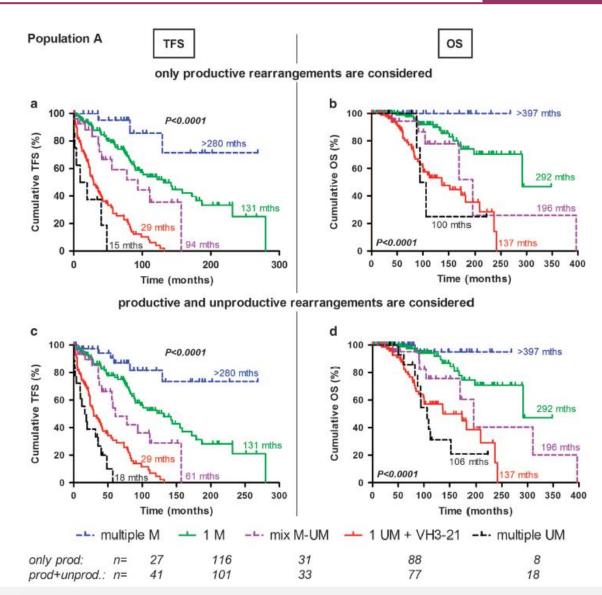



Highlights

- Large study with more than
 1189 clinical samples
- Great publication for those considering LymphoTrack®
- NGS demonstrates superior performance compared with CE assays
- higher sensitivity/resolution
- improved detection
- Good notes with respect to implementation

Establishment of Immunoglobulin Heavy (IGH) Chain Clonality Testing by Next-Generation Sequencing for Routine Characterization of B-Cell and Plasma Cell Neoplasms

Maria E. Arcila,* Wayne Yu,[†] Mustafa Syed,[†] Hannah Kim,[†] Lidia Maciag,[†] JinJuan Yao,[†] Caleb Ho,[†] Kseniya Petrova,[†] Christine Moung,[†] Paulo Salazar,[†] Ivelise Rijo,[†] Tessara Baldi,[†] Ahmet Zehir,[†] Ola Landgren,[†] Jae Park,[†] Mikhail Roshal,[†] Ahmet Dogan,[†] and Khedoudja Nafa[†]

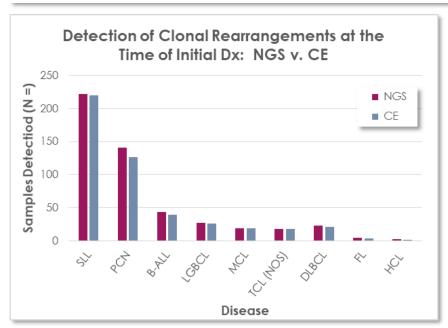

ORIGINAL ARTICLE

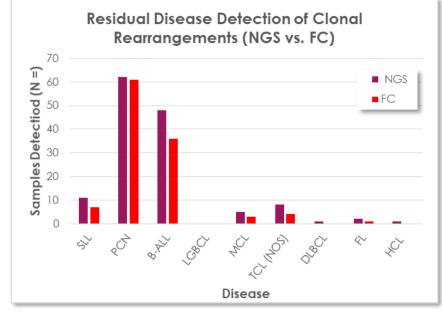
Targeted deep sequencing reveals clinically relevant subclonal IgHV rearrangements in chronic lymphocytic leukemia

B Stamatopoulos^{1,2,3,7}, A Timbs^{1,7}, D Bruce¹, T Smith⁴, R Clifford^{1,3}, P Robbe^{1,3}, A Burns^{1,3}, DV Vavoulis³, L Lopez⁵, P Antoniou³, J Mason¹, H Dreau¹ and A Schuh^{1,6}

Highlights

- Demonstrates advantage of NGS as compared to Sanger sequencing for determining IgHV mutational status and identify the presence of multiple subclones.
- The additional information provided through NGS testing improves disease stratification and prognostication significantly




Highlights

- LymphoTrack® detected clonal rearrangements in 94% of Dx cases vs. 89% by CE.
- NGS was equivalent to FC for detection of plasma cell neoplasms (PCN) but showed advantages in disease monitoring for B-ALL, B and T cell lymphomas.

Next Generation Sequencing (NGS) Based IGH and TCR Clonality Assays Provide Excellent Specificity and Sensitivity for Routine Clonal Characterization and Monitoring of Lymphoproliferative Disorders

Maria E. Arcila, Mustafa Syed, Wayne Yu, Hannah Kim, JinYuan Yao, Caleb Ho, Kseniya Petrova-Drus, Mikhail Roshal, Jae H. Park, Ola Landgren, Ahmet Dogan, and Khedoudja Nafa

