

Gel and Capillary Assays

Gel Detection

- B- and T-cell clonality assays
- Translocation assays

ABI Fluorescence Detection

- B- and T-cell clonality assays
- Translocation assays

Invivoscribe developed or based on EuroClonality/BIOMED-2 Concerted Action BMH4-CT98-3936

Gel and Capillary Assays

RUO Assays

B-Cell Assays

IGH + IGK B-Cell Clonality Assays

IGH Gene Rearrangement Assays

IGH Gene Clonality Assays

IGK Gene Clonality Assays

IGL Gene Clonality Assays

T-Cell Assays

TCRB + TCRG T-Cell Clonality Assays

TCRB Gene Clonality Assays

T-Cell Receptor Gamma Gene Rearrangement Assay 2.0

T-Cell Receptor Gamma Gene Rearrangement Assays

TCRG Gene Clonality Assays

TCRD Gene Clonality Assays

Translocation Assays

BCL1/JH Translocation Assay

BCL2/|H t(14;18) Translocation Assay

BCL2/JH Translocation Assay

BCR/ABL t(9;22) Translocation Assays

PML/RARa t(15;17) Translocation Assays

Mutation Assays

IGH Somatic Hypermutation Assays v2.0

Sources of Information - Catalog

IGH Gene Clonality Assay

Reagents

Controls

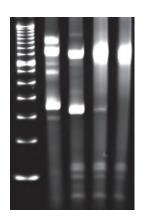
Master Mixes

Controls	Concentration	Units in Assay	Units in Assay MegaKit
IVS-0030 Clonal Control DNA	200 μ g /mL	1 x 100 µL tube	5 x 100 µL tubes
IVS-0019 Clonal Control DNA	200 μ g /mL	1 x 100 µL tube	5 x 100 µL tubes
IVS-0024 Clonal Control DNA	200 μ g /mL	1 x 100 µL tube	5 x 100 µL tubes
IVS-0008 Clonal Control DNA	200 μ g /mL	1 x 100 µL tube	5 x 100 µL tubes
IVS-0000 Polyclonal Control DNA	200 μ g /mL	1 x 100 µL tube	5 x 100 µL tubes
Master Mixes	Target	Units in Assay	Units in Assay MegaKit
IGH Tube A	Framework 1 + JH	1 x 1500 µL tube	10 x 1500 µL tubes
IGH Tube B	Framework 2 + JH	1 x 1500 µL tube	10 x 1500 μL tubes
IGH Tube C	Framework 3 + JH	1 x 1500 µL tube	10 x 1500 μL tubes
IGH Tube D	DH1-6 + JH	1 x 1500 µL tube	10 x 1500 μL tubes
IGH Tube E	DH7 + JH	1 x 1500 µL tube	10 x 1500 µL tubes
Specimen Control Size Ladder	Multiple Genes	1 x 1500 µL tube	10 x 1500 µL tubes

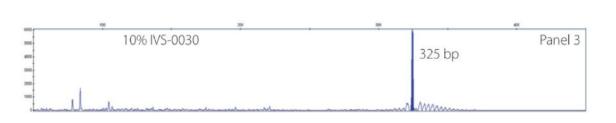
Sources of Information - IFU

IGH Gene Clonality Assay

More detailed information


Controls and Standards	IVS Catalog #	Concentration		
IVS-0030 Clonal Control DNA	4-088-1750	100 μL @200 μg/mL		
IVS-0019 Clonal Control DNA	4-088-1090	100 μL @200 μg/mL		
IVS-0024 Clonal Control DNA	4-088-1390	100 μL @200 μg/mL		
IVS-0008 Clonal Control DNA	4-088-0430	100 μL @200 μg/mL		
IVS-0000 Polyclonal Control DNA	4-092-0010	100 μL @200 μg/mL		
Master Mixes for 1-101-0020 and 1-101-0040	IVS Catalog #	Target		
IGH Tube A - Unlabeled	2-101-0010	Framework 1 + JH		
IGH Tube B - Unlabeled	2-101-0020	Framework 2 + JH		
IGH Tube C - Unlabeled	2-101-0030	Framework 3 + JH		
IGH Tube D - Unlabeled	2-101-0040	DH1-6 + JH		
IGH Tube E - Unlabeled	2-101-0050	DH7 + JH		
Specimen Control Size Ladder - Unlabeled	2-096-0020	Multiple Genes		
Master Mixes for 1-101-0061 and 1-101-0081	IVS Catalog #	Target		
IGH Tube A - 6FAM	2-101-0011	Framework 1 + JH		
IGH Tube B - 6FAM	2-101-0101	Framework 2 + JH		
IGH Tube C - HEX	2-101-0031	Framework 3 + JH		
IGH Tube D - HEX	2-101-0041	DH1-6 + JH		
IGH Tube E - 6FAM	2-101-0051	DH7 + JH		
Specimen Control Size Ladder - 6FAM	2-096-0021	Multiple Genes		
Note: MegaKits contain 10 units of each master mix and 5 units of each Controls and Standards				

Clonality Assays Detection Formats


Gel

- 6% non-denaturing PAGE
- Cheaper start-up
- Easier interpretation/ Fewer false positives for some targets (TRD, IGK, IGL)

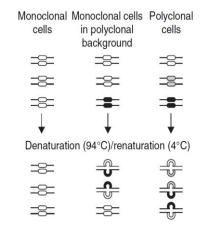
Capillary Electrophoresis

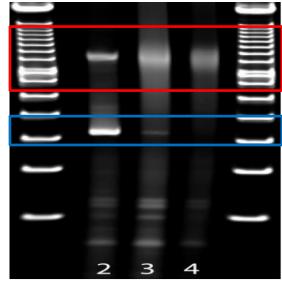
- Gene Scanning
- ABI (310/3100/3130/3500)*
- High Sensitivity
- High Throughput
- More objective interpretation

*For further information refer to the most current version of the IFU.

Heteroduplex Analysis – Gel Detection

Heat denature DNA amplicons

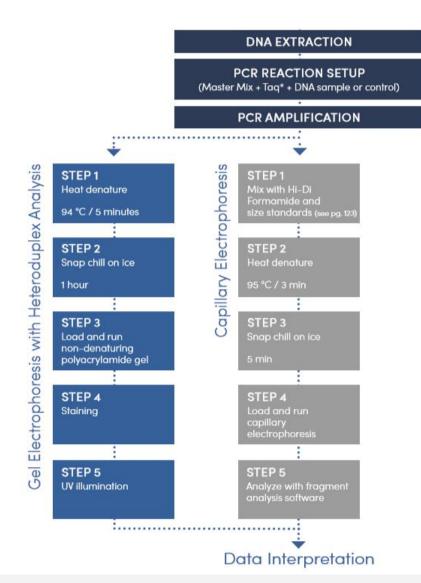

94°C for 5 minutes


Snap Chill

4 °C for 1 hour

<u>Clonal</u> PCR products re-anneal to each other properly

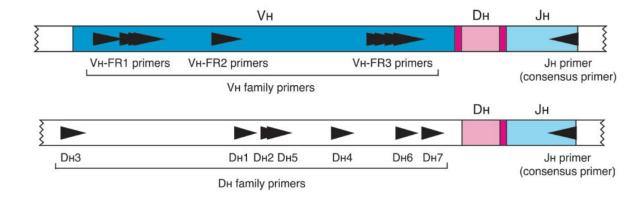
<u>Polyclonal</u> PCR products' strands bind incorrectly to non-homologous strands forming secondary structures

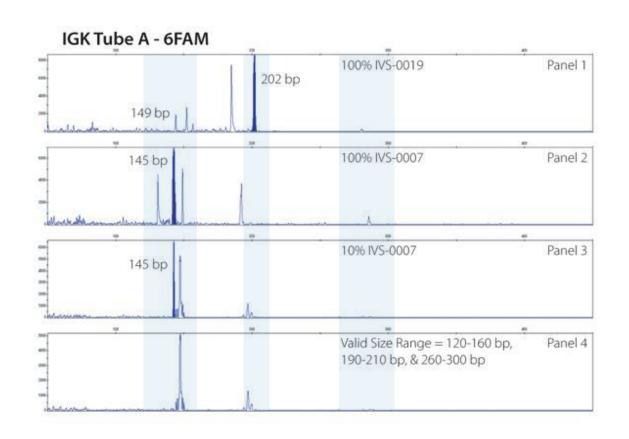

Langerak et al., Expert Opin. Med. Diagn. (2007) 1(4):451-461.

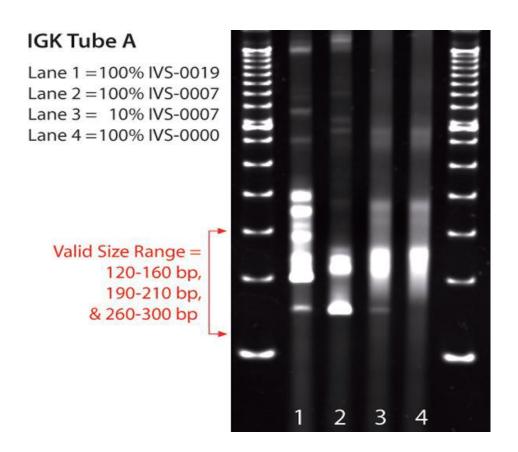
Workflow

Controls

- Positive
- Negative
- No Template


Controls should be run to ensure proper performance of the assay


IGH Gene Clonality Assays


Targets

- Framework 1 VH-JH (tube A)
- Framework 2 VH-JH (tube B)
- Framework 3 VH-JH (tube C)
- Incomplete DH-JH (tubes D&E)

IGK Gene Clonality Assays

Multiple Valid Size Ranges Possible!

TCRG Gene Assays (2 options)

TCRG Gene Clonality Assays

Design: BIOMED-2

2 tubes Master Mixes

T-Cell Receptor Gamma Gene Rearrangement Assay 2.0

Design: Invivoscribe

1 tube Master Mix

Just 1 Master Mix interpretation

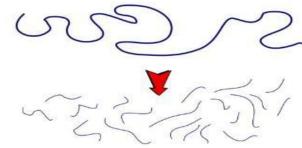
Benefits

Smaller amplicon sizes

Designed by Invivoscribe

Easier setup and simplified

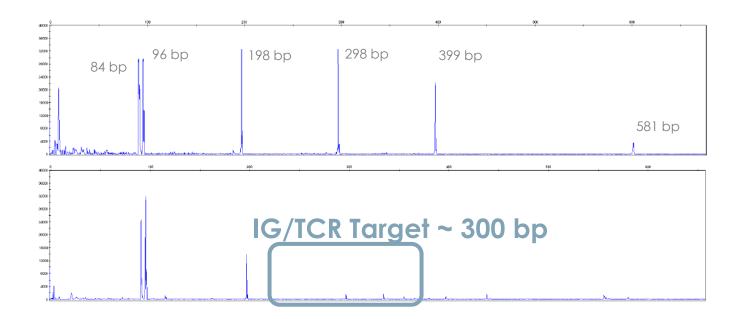
Sample Types


Common sources of DNA:

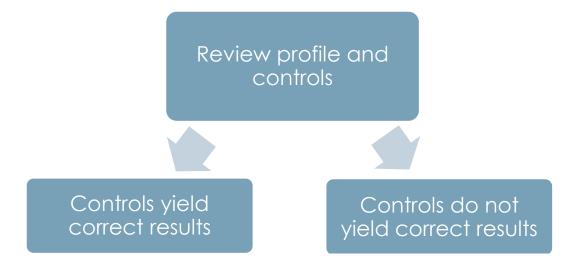
 Formalin-fixed paraffin-embedded (FFPE), fresh/frozen tissue, peripheral blood, bone marrow.

Common issues:

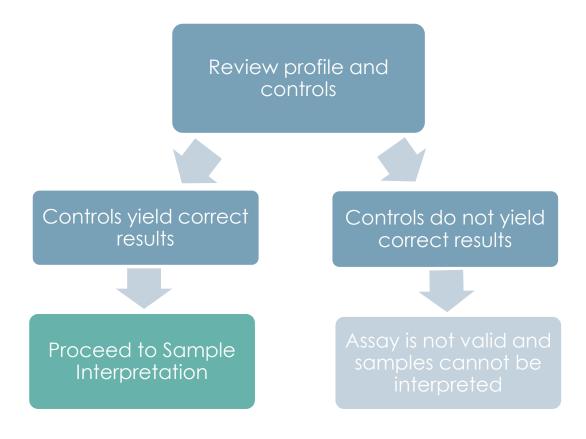
- DNA integrity
- PCR inhibitors



Specimen Control Size Ladder (SCSL)


Tests quality & quantity by amplifying housekeeping genes

- Are the fragments of DNA sufficient for primer binding & amplification?
- Are there PCR inhibitors present?
- Is there enough DNA for amplification?



Interpretation of Results

Interpretation of Results

Educational Section

Complementary Targets

Easy to combine

- IGH and IGK
- TRB and TRG

Advantages of Combining Targets:

- Increased detection of clonal cells in clonality studies
- Time saving

B-Cell Research Targets

	IGH (FR1, 2 & 3)	IGK (Vk – Jk & Kde)	IGH+IGK
MCL%)	100	100	100
B-CLL/SLL(%)	100	100	100
FL(%)	84	84	100
MZL(%)	87	83	97
DLBCL(%)	79	80	96
Total(%)	88	88	98

PAS Evans et al., Leukemia. 2006 21:201-206.

T-Cell Research Targets

	TRB	TRG	TRB+TRG
T-PLL(%)	100	94	100
T-LGL(%)	96	96	100
PTCL-U(%)	98	94	100
AILT(%)	89	92	95
ALCL(%)	74	74	79*
Total(%)	91	89	94 (99)*

J.J.M. van Krieken et al. Leukemia. 2007 21:201-206.

^{*}Approximately 20–25% of ALCL are known to have no TCR gene rearrangements and are defined as null ALCL **J.J.M. van Krieken et al. Leukemia. 2007 21:201-206.**

Low Quality & Quantity of DNA Specimen

Specimen Considerations during Research Studies

Duplicate Assessment Highly Preferred Over Multiple Targets

Priority Selection of Targets

- IGH FR3

Smaller Amplicons - Potentially More Reliable

Suspect T-Cell Proliferations

- TRG tube A + TRB tube A
 - Preferable to also test TRB tube B

Suspect B-Cell Proliferations

- IGH D-J
- IGK Kde Not Prone to Somatic Mutations

Low % of B- or T-Cells (e.g., Skin or Intestinal Lesions)

- Easily Over Interpreted Due to Coincidental Dominant Peaks
- Test Samples in Duplicate

A.W. Langerak et al. Leukemia 2012 26: 2159-71.

No Products after Specimen PCR

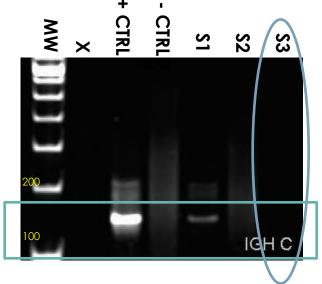
Troubleshooting Lack of Amplification in Research Specimens

Poor DNA Quality

Use Specimen Control Size Ladder (SCSL)

Few B- & T-Cells

- Check Sample via alternative method
- Choose Alternative Specimen Sample


Somatic Hypermutation Affected Primer Binding

Evaluate other Frameworks or Targets

t(11;14) and t(14;18) Aberrations

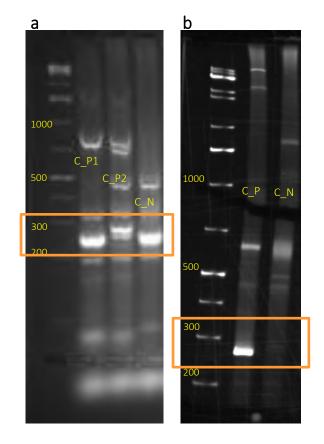
 Conduct Complementary Laboratory Tests

What Should Be Considered?

IGH Tube C, valid size 100-170bp

A.W. Langerak et al. Leukemia 2012 26: 2159-71.

1/2 Volume Reactions (i.e., 25 µL vs. 50 µL)?


- Conditions in IFU were optimized for product performance
- IVS consistently see 25 µL causing less than optimal results & reduces sampling

Agarose vs. Polyacrylamide Gels(PAGE)?

 Agarose Resolution is not sufficient to discern a monoclonal band from a polyclonal smear

TCRB Tube A. Valid size 240-285 bp

- a) No heteroduplex on agarose gel
- b) Heteroduplex on polyacrylamide gel

Which <u>ABI instrument</u> can be used for Fluorescence Fragment Detection?*

ABI 310, 3100, 3130 & 3500

What are the Recommended ABI <u>Calibration Standards</u>?

- DS-30 matrix standards (Dye set D) with ABI 310, 3100, or 3130
- DS-33 matrix standards (Dye Set G5) with ABI 3500

What is the Recommended POP?

- POP-7 if equipment supports fragment analysis & sequencing (IGH SHM)
- POP-4 or POP-7 for fragment analysis only
- POP-6 is not recommended

*Not all assays have been tested on all instruments. For further information refer to the most current version of the IFU

Master Mix Storage

- Due to high salt concentration, master mixes should be stored at -85 to -65 °C
- Labs should minimize the number of freeze thaw cycles
- IVS recommends a maximum of 5 cycles to avoid performance degradation

DNA/RNA Storage

- DNA controls are best stored at 2 to 8 °C, but can also be stored at -85 to -65 °C
- RNA controls should be stored at -85 to -65 °C

How to Thaw Master Mixes?

- Thaw at room temperature for ~45 min, ensure fully thawed
- Vortex before use

Take Home Message

- Invivoscribe offers a full range of PCR-based molecular testing products for the study of Hematology-Oncology malignancies.
- **PCR-based Clonality Testing** of B- and T- Cell Gene Rearrangements is useful in hematology and oncology research.
- Testing complimentary targets results in increased detection of clonal cells in research studies.

