### Introduction to B- and T-cell Clonality Testing & Targets



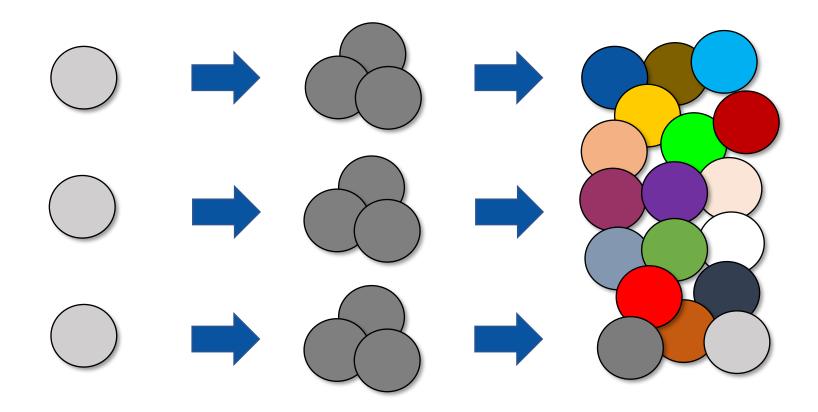
# What is Clonality?



### Clonality

• A proliferation of cells originating from a single progenitor cell, producing a **pool of identical clonal cells.** 

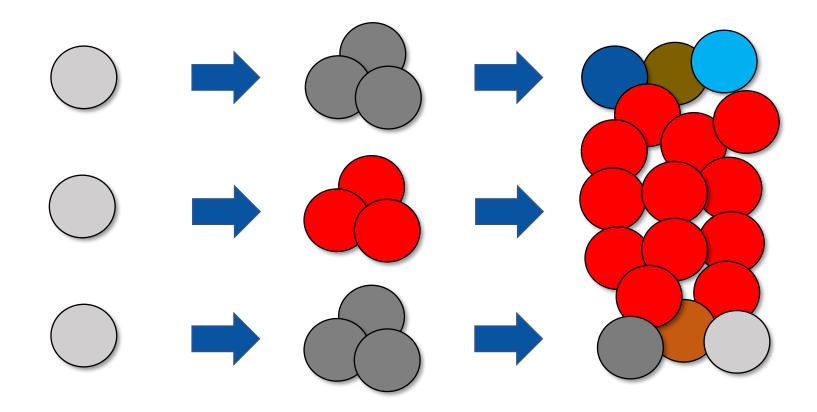



• Clonality testing using molecular techniques is used to **confirm the presence of leukemia or lymphoma**.

### Highly indicative of B- or T-cell malignancy



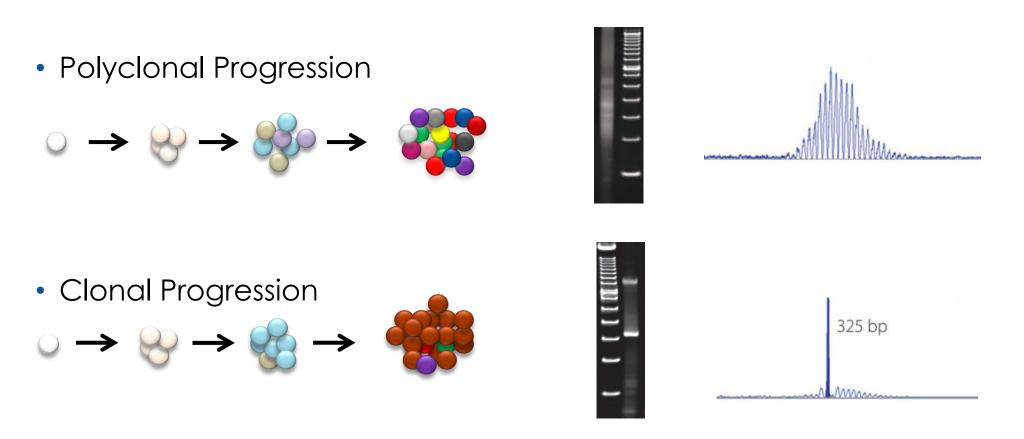



### **Polyclonal Progression**







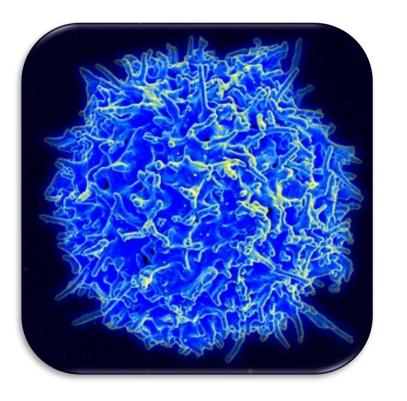

### **Clonal Progression**





# What is Clonality?






#### Highly Indicative of B- or T-Cell Malignancy



# Why test for B- and T-cell clonality?

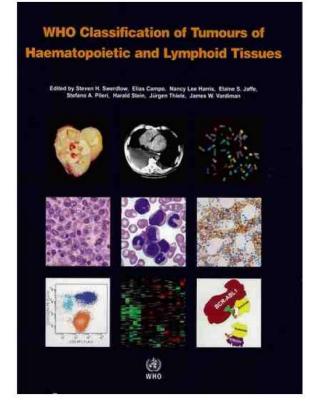




# Leukemias and lymphomas can be challenging to diagnose by

- morphology
- immunohistochemistry
- flow cytometry

5-15% of above cases result in inconclusive diagnoses


Diagnosis of lymphoid malignancies is greatly supported and facilitated by **clonality testing** 

Adopted in routine diagnostics for further MRD testing



# Why test for B- and T-cell clonality?





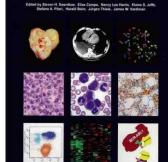
We are facing a growing number of hematopoietic tumors with specific or characteristic molecular changes.

> Diagnosis of lymphoid malignancies is greatly supported and facilitated by clonality testing



# Why test for B- and T-cell clonality?

### Monoclonality is a dominant characteristic of cancer


### Allows for discrimination between :

- Reactive lesions (polyclonal) generally considered benign
- Hematologic malignancies (clonal) generally considered neoplastic

### Aids in diagnosis:

- of Minimal tumor infiltration
- on limited diagnostic tissue when the architecture is not evaluable
- of neoplastic proliferations without specific cytological, histological or immunohistochemical criteria

### Helps to identify tumor-specific markers for post-treatment monitoring





# **Clonality Targets**

**B-Cell Receptors (BCR)/Immunoglobulins (Ig)** 



#### antigen-binding site antigen-binding site variable regions variable regions light chain constant regions constant regions heavy chain transmembrane transmembrane region region $\alpha$ chain $\beta$ chain

#### **Each Lymphocyte has a Unique Antigen Receptor** Magnitude ~10<sup>12</sup> (*i.e.*, 1,000,000,000) different Ig or TCR molecules



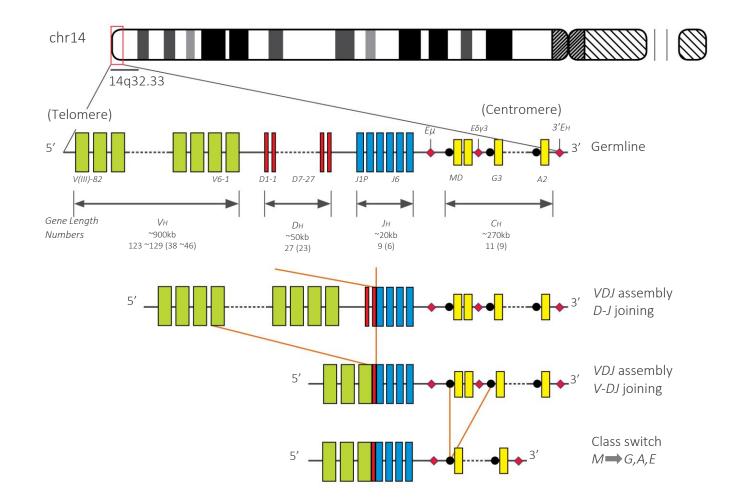
Confidential and Proprietary Information. Unauthorized use, replication or dissemination is prohibited.

T-Cell Receptor (TCR)

# **Clonality Targets**



### Antigen Receptor Molecules (AgRs) are the Molecular Targets


#### • B- and T- Cell Receptors

- > IGH, IGK, IGL (B-Cell Receptors)
- > TRG, TRB, TRD (T-Cell Receptors)
- Each lymphocyte has a unique AgR (single specificity)



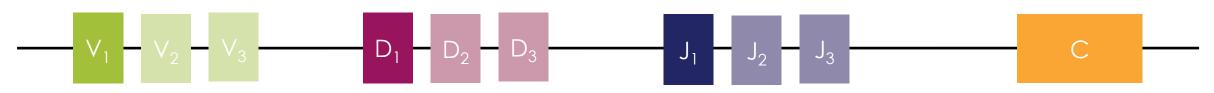
### Human IGH Gene Locus





\* invivoscribe Improving Lives with Precision Diagnostics Dyer, M. et al., *Blood* 115:1490-1499 (2010).




### **Rearranged V-D-J gene :**

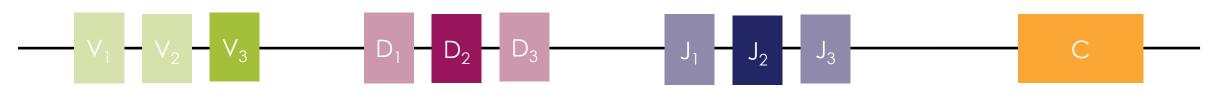


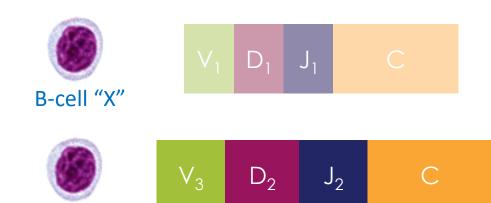




### **Rearranged V-D-J gene :**





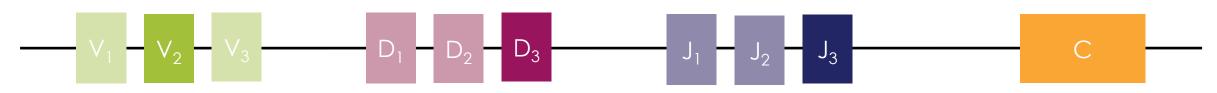

Adapted from Dr. Yury Monczak, PhD. Jewish General Hospital & McGill University "Utility for NGS Assays for the Evaluation of Lymphoid Malignancies." 2020 Feb. 27. AMP Webinar https://vimeo.com/504502555

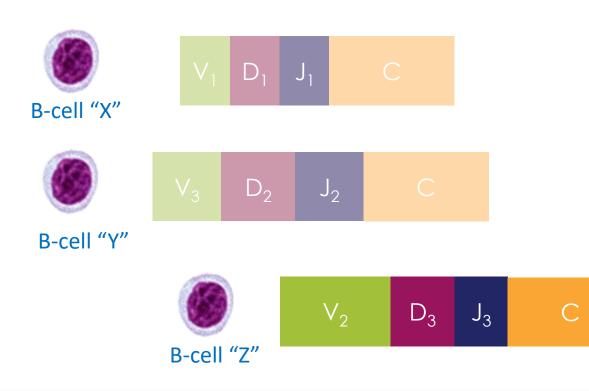


### **Rearranged V-D-J gene :**







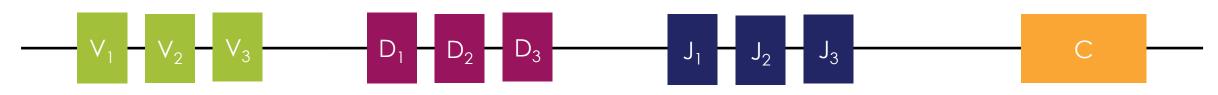



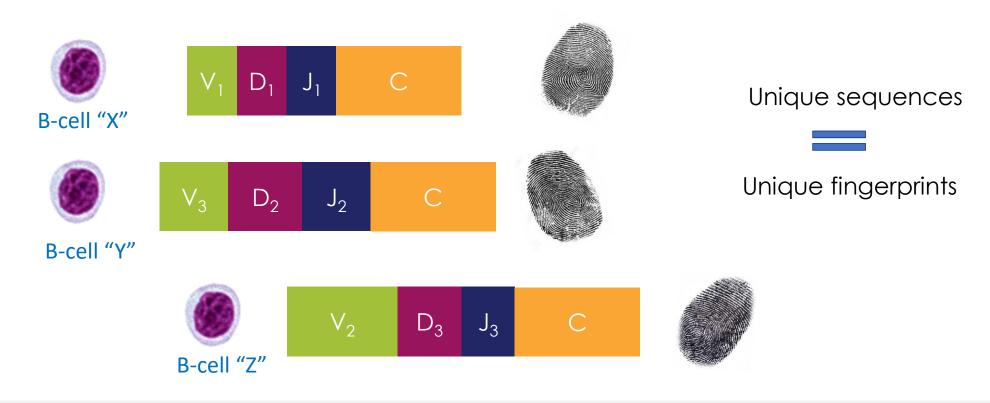

Adapted from Dr. Yury Monczak, PhD. Jewish General Hospital & McGill University "Utility for NGS Assays for the Evaluation of Lymphoid Malignancies." 2020 Feb. 27. AMP Webinar https://vimeo.com/504502555



### **Rearranged V-D-J gene :**






Adapted from Dr. Yury Monczak, PhD. Jewish General Hospital & McGill University "Utility for NGS Assays for the Evaluation of Lymphoid Malignancies." 2020 Feb. 27. AMP Webinar https://vimeo.com/504502555



### **Rearranged V-D-J gene :**







Adapted from Dr. Yury Monczak, PhD. Jewish General Hospital & McGill University "Utility for NGS Assays for the Evaluation of Lymphoid Malignancies." 2020 Feb. 27. AMP Webinar https://vimeo.com/504502555

# **B- and T-cell Clonality Simplified**



### IGH Locus (14q32.33)



### TRG Locus (7p14)





# **Evolution of Clonality Testing**



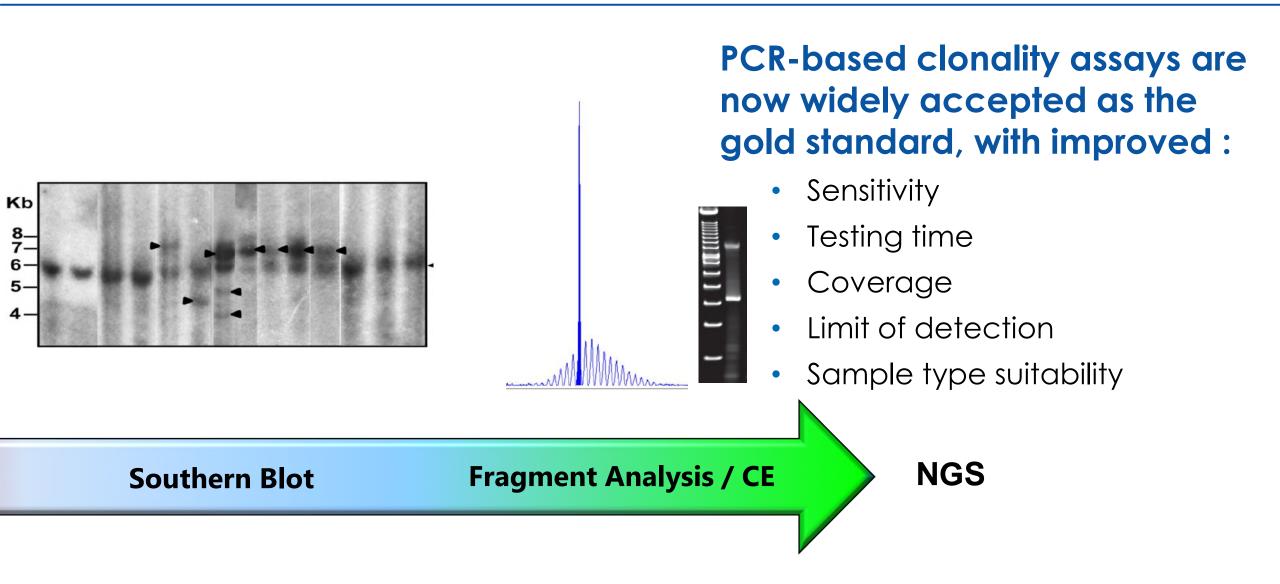
# Clonality Testing was originally performed by Southern Blots

- Labor intensive
- Restricted repertoire
- High DNA quality and quantity required
- Time consuming
- Moderate limits of detection
- Subjective interpretation

#### **Fragment Analysis / CE**



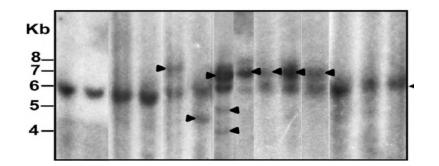
**Southern Blot** 


Kb

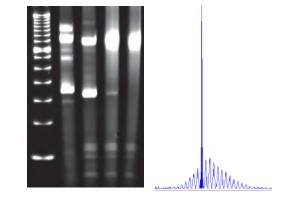
6

5

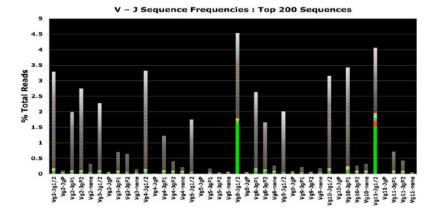
# **Evolution of Clonality Testing**






# **Evolution of Clonality Testing**






- Labor intensive
- Time consuming ۲
- Restricted repertoire
- Requires high DNA quantity & quality



- Increased sensitivity
- Reduced testing time ٠
- Better coverage ٠
- Lower limits of detection ٠
- More sample types



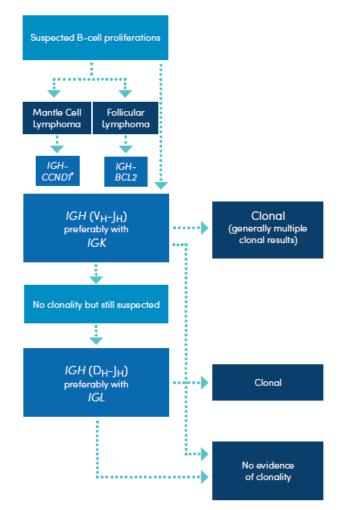
- DNA sequence of clones
- Highest sensitivity
- Ability to track clones

NGS **Fragment Analysis / CE Southern Blot** 



# Hematologic Malignancy Research & Testing Guide 🚸

|   | Disease                                                                                      |                                          |                                          | Gene | Rearr       | anger       | nent |     |     | Т                       | ransla       | cation        | 1            | Muto | itions |
|---|----------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|------|-------------|-------------|------|-----|-----|-------------------------|--------------|---------------|--------------|------|--------|
|   | Recommended Primary Test Recommended Secondary Test                                          | IGH<br>(V <sub>H</sub> -J <sub>H</sub> ) | IGH<br>(D <sub>H</sub> -J <sub>H</sub> ) | IGK  | IGL         | IGHV<br>SHM | TRB  | TRD | TRG | IGH-<br>BCL1<br>(CCND1) | IGH-<br>BCL2 | BCR-<br>ABL1* | PML<br>RARa* | FLT3 | NPM1   |
| l | Marginal Zone Lymphoma (MZL), extranodal <sup>12,13,27</sup>                                 | 88%                                      | 58%                                      | 84%  | 29%         |             | 23%  | 10% | 16% |                         |              |               |              |      |        |
| I | Marginal Zone Lymphoma (MZL), nodal <sup>13</sup>                                            | 100%                                     | 30%                                      | 80%  | 30%         |             | 10%  | 20% | 10% |                         |              |               |              |      |        |
| I | Mantle Cell Lymphoma (MCL) <sup>2,6,7,12,13,27,37</sup>                                      | 100%                                     | 11%                                      | 100% | 44%         | *           | 9%   | 4%  | 11% | 75%                     |              |               |              |      |        |
| I | Follicular Lymphoma (FL) <sup>3,7,12,13,27,28</sup>                                          | 84%                                      | 19%                                      | 84%  | 21%         |             | 6%   | 5%  | 2%  |                         | 90%          |               |              |      |        |
| l | Diffuse Large B-cell Lymphoma (DLBCL) <sup>3,12,13,27</sup>                                  | 80%                                      | 30%                                      | 80%  | 28%         |             | 21%  | 14% | 15% |                         | 30%          |               |              |      |        |
| l | Multiple Myeloma (MM) and other Plasma Cell Neoplasms (PCN) <sup>2,9,10,20,25</sup>          | 84%                                      | 60%                                      | 57%  | 97%         |             |      |     |     | 20%                     |              |               |              |      |        |
| l | Chronic Lymphocytic Lymphoma (CLL) <sup>11,12,13,15,23,27,35</sup>                           | 100%                                     | 43%                                      | 100% | 30%         | *           | 25%  | 12% | 18% |                         |              |               |              |      |        |
| Į | B-cell Acute Lymphoblastic Leukemia (B-ALL) <sup>4,12,14,19,21,22,27,29,30,31,32,33,34</sup> | 96%                                      | 57%                                      | 95%  | 20%         |             | 81%  | 86% | 75% |                         |              | 30%           |              |      |        |
| l | Suspect B-cell Proliferations <sup>12,26,27,33</sup>                                         | 93%                                      | 93%                                      | 90%  | 40%         |             | 20%  |     | 20% |                         |              |               |              |      |        |
| l | Peripheral T-cell Lymphoma (PTCL) <sup>12,13,14,24</sup>                                     | 35%                                      | 4%                                       |      | 2%          |             | 98%  |     | 94% |                         |              |               |              |      |        |
| l | T-cell Acute Lymphoblastic Leukemia (T-ALL) <sup>12,14,21,22,29,31</sup>                     | 24%                                      | 25%                                      | 4%   |             |             | 92%  | 68% | 95% |                         |              |               |              |      |        |
| l | Angioimmunoblastic T-cell Lymphoma (AILT) <sup>12,13,14</sup>                                | 19%                                      | 11%                                      | 30%  | 5%          |             | 99%  | 35% | 92% |                         |              |               |              |      |        |
| l | Adult T-cell Leukemia/Lymphoma <sup>39</sup>                                                 |                                          |                                          |      |             |             | 97%  |     | 96% |                         |              |               |              |      |        |
| l | Anaplastic Large-Cell Lymphoma (ALCL) <sup>12,13,14</sup>                                    |                                          |                                          |      |             |             | 74%  | 12% | 74% |                         |              |               |              |      |        |
| l | T-cell Prolymphocytic Leukemia (T-PLL) <sup>12,13,14</sup>                                   | 3%                                       | 3%                                       | 3%   | 3%          |             | 100% | 6%  | 94% |                         |              |               |              |      |        |
| l | T-cell Large Granular Lymphocytic Leukemia (T-LGL Leukemia) <sup>12,13,14</sup>              |                                          |                                          | 4%   | 4%          |             | 97%  | 29% | 96% |                         |              |               |              |      |        |
|   | Suspect T-Cell Proliferations <sup>12,26,40</sup>                                            | 10%                                      |                                          | 10%  |             |             | 90%  | 11% | 90% |                         |              |               |              |      |        |
|   | Acute Myeloid Leukemia (AML) <sup>a,16</sup>                                                 |                                          |                                          |      |             |             |      |     |     |                         |              |               |              | 33%  | 64%    |
|   | Acute Promyelocytic Leukemia (APL) <sup>1,5,16,17</sup>                                      |                                          |                                          |      |             |             |      |     |     |                         |              |               | 90%          |      |        |
|   | Chronic Myeloid Leukemia (CML) <sup>7,18,19,21,38</sup>                                      |                                          |                                          |      |             |             |      |     |     |                         |              | 87%           |              |      |        |
|   | Myeloproliferative Neoplasms (MPNs) <sup>36</sup>                                            |                                          |                                          |      |             |             |      |     |     |                         |              | 10%           |              |      |        |
| 1 | Note: The percentage of complex within a given disease category were detected up             |                                          |                                          | _    | on indicate |             |      |     |     |                         |              |               |              |      |        |


\* invivoscribe\*

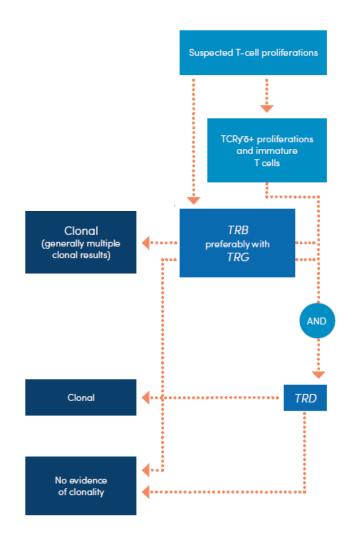
Note: The percentage of samples within a given disease category were detected using each gene target. Percentages indicate the highest referenced value.

# **Clonality Testing Guide**



- A test algorithm for suspect B-cell
  lymphoproliferations
- Developed in concert with the EuroClonality/BIOMED-2 group for PCRbased clonality assessment of suspected B-cell lymphoproliferative disorders




J.J.M. van Krieken et al., Leukemia 2007 21: 201-206. A.W. Langerak et al., Leukemia 2012 26: 2159-71.

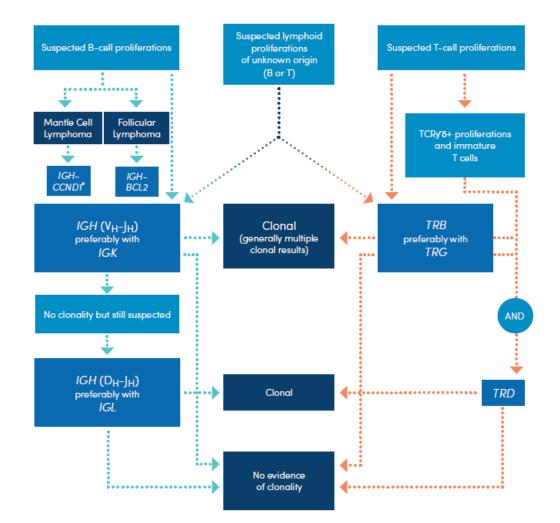


# **Clonality Testing Guide**



- A test algorithm for suspect T-cell
  lymphoproliferations
- Developed in concert with the EuroClonality/BIOMED-2 group for PCRbased clonality assessment of suspected T-cell lymphoproliferative disorders




J.J.M. van Krieken et al., Leukemia 2007 21: 201-206. A.W. Langerak et al., Leukemia 2012 26: 2159-71.



# **Clonality Testing Guide**



- A test algorithm for suspect B- and T-cell lymphoproliferations
- Developed in concert with the EuroClonality/BIOMED-2 group for PCRbased clonality assessment of suspected B- and T-cell lymphoproliferative disorders



J.J.M. van Krieken et al., Leukemia 2007 21: 201-206. A.W. Langerak et al., Leukemia 2012 26: 2159-71.



# **Multiplexing Targets**



### Why combine testing of *IGH* V-J & *IGK*?

The majority of mature B-cell malignancies can be identified by targeting three IGH (V $_{\rm H}\text{-}J_{\rm H})$  frameworks\*

|                     | <i>IGH</i> FR1<br>(V <sub>н</sub> – J <sub>н</sub> ) | <i>IGH</i> FR2<br>(V <sub>н</sub> - J <sub>н</sub> ) | <i>IGH</i> FR3<br>(V <sub>н</sub> - J <sub>н</sub> ) | <i>IGH</i><br>(FR 1, 2 & 3) |
|---------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------|
| MCL<br>(n=54)       | 100%                                                 | 98%                                                  | 96%                                                  | 100%                        |
| B-CLL/SLL<br>(n=56) | 95%                                                  | 91%                                                  | 93%                                                  | 100%                        |
| FL<br>(n=109)       | 73%                                                  | 76%                                                  | 52%                                                  | 84%                         |
| MZL<br>(n=41)       | 73%                                                  | 85%                                                  | 68%                                                  | 87%                         |
| DLBCL<br>(n=109)    | 68%                                                  | 61%                                                  | 50%                                                  | 79%                         |
| Total<br>(n=369)    | 79%                                                  | 78%                                                  | 66%                                                  | 88%                         |

Abbreviations: B-CLL, B-cell chronic lymphocytic leukemia; DLBCL, diffuse large B-cell lym cell lymphoma; MZL, marginal zone B-cell lymphoma.

<sup>1</sup>PA Evans et al. Leukemia. 2007 21:207-214



# **Multiplexing Targets**



### Why combine testing of *IGH* V-J & *IGK*?

The majority of mature B-cell malignancies can be identified by targeting three IGH (V<sub>H</sub>-J<sub>H</sub>) frameworks and two IGK (V<sub>k</sub>-J<sub>k</sub> and Kde) rearrangements\*

|                     | <i>IGH</i> FR1<br>(V <sub>н</sub> – J <sub>н</sub> ) | <i>IGH</i> FR2<br>(V <sub>н</sub> – J <sub>н</sub> ) | <i>IGH</i> FR3<br>(V <sub>н</sub> – J <sub>н</sub> ) | <i>IGH</i><br>(FR 1, 2 & 3) | <i>IGK</i><br>(Vk - Jk & Kde) | Total<br>(FR1, 2, 3 & <i>IGK</i> ) |
|---------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------|-------------------------------|------------------------------------|
| MCL<br>(n=54)       | 100%                                                 | 98%                                                  | 96%                                                  | 100%                        | 100%                          | 100%                               |
| B-CLL/SLL<br>(n=56) | 95%                                                  | 91%                                                  | 93%                                                  | 100%                        | 100%                          | 100%                               |
| FL<br>(n=109)       | 73%                                                  | 76%                                                  | 52%                                                  | 84%                         | 84%                           | 100%                               |
| MZL<br>(n=41)       | 73%                                                  | 85%                                                  | 68%                                                  | 87%                         | 83%                           | 97%                                |
| DLBCL<br>(n=109)    | 68%                                                  | 61%                                                  | 50%                                                  | 79%                         | 80%                           | 96%                                |
| Total<br>(n=369)    | 79%                                                  | 78%                                                  | 66%                                                  | 88%                         | 88%                           | 98%                                |

Clonality can be Identified in 98% of all B-Cell Malignancies

Abbreviations: B-CLL, B-cell chronic lymphocytic leukemia; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; MCL, mantle cell lymphoma; MZL, marginal zone B-cell lymphoma.

<sup>1</sup>PA Evans et al. Leukemia. 2007 21:207-214

#### **Testing Complementary Gene Targets in Parallel Improves Confidence!**



# **Multiplexing Targets**



### Why combine testing of TRB & TRG?

|           | TRB | TRG | TRB+TRG  |  |
|-----------|-----|-----|----------|--|
| T-PLL(%)  | 100 | 94  | 100      |  |
| T-LGL(%)  | 96  | 96  | 100      |  |
| PTCL-U(%) | 98  | 94  | 100      |  |
| AILT(%)   | 89  | 92  | 95       |  |
| ALCL(%)   | 74  | 74  | 79*      |  |
| Total(%)  | 91  | 89  | 94 (99)* |  |

\*Approximately 20–25% of ALCL are known to have no TCR gene rearrangements and are defined as null ALCL; J.J.M. van Krieken et al. *Leukemia*. 2007 21:201-206.

Clonality can be Identified in 94% of all T-Cell Malignancies

#### **Testing Complementary Gene Targets in Parallel Improves Confidence!**



# Why Multiplexing Targets?



#### **B-Cell Targets**

| Easy | to  | com   | b | ine: |
|------|-----|-------|---|------|
| /    | . • | 00111 |   |      |

- IGH and IGK
- TRB and TRG

#### Advantages of Combining Targets:

- Highest sensitivity
- Helps confirm diagnosis in difficult cases
- Improves Reliability

|              | IGH (FR1, 2 & 3) | IGK (Vk – Jk &<br>Kde) | IGH+IGK |
|--------------|------------------|------------------------|---------|
| MCL%)        | 100              | 100                    | 100 🦯   |
| B-CLL/SLL(%) | 100              | 100                    | 100     |
| FL(%)        | 84               | 84                     | 100     |
| MZL(%)       | 87               | 83                     | 97      |
| DLBCL(%)     | 79               | 80                     | 96      |
| Total(%)     | 88               | 88                     | 98      |

#### **T-Cell Targets**

|           | TRB | TRG | TRB+TRG  |
|-----------|-----|-----|----------|
| T-PLL(%)  | 100 | 94  | 100      |
| T-LGL(%)  | 96  | 96  | 100      |
| PTCL-U(%) | 98  | 94  | 100      |
| AILT(%)   | 89  | 92  | 95       |
| ALCL(%)   | 74  | 74  | 79*      |
| Total(%)  | 91  | 89  | 94 (99)* |

#### **Testing Complementary Gene Targets in Parallel Improves Confidence!**



### Quiz



# Clonality is defined as a proliferation of cells originating from a single progenitor cell, producing a pool of identical clonal cells. True or False?

• TRUE

### Why test for clonality?

- Monoclonality is a dominant feature of cancer.
- Clonality testing facilitates the diagnosis of leukemias and lymphomas.
- Clonality testing allows for discrimination between reactive lesions and hematologic malignancies.
- All of the above







### The molecule targets for clonality testing are B- and T-Cell Receptors. True or False?

• TRUE

### Which detection method is NOT available in Invivoscribe assay kits?

- Gel Electrophoresis
- Flow Cytometry
- Capillary Electrophoresis (ABI)
- Next-Generation Sequencing (NGS)







### True or False? Multiplexing targets is important because:

- It increases the detection rate of clonal rearrangements
- It increases the test sensitivity
- It improves confidence in results
- TRUE



## Take Home Message



- PCR-based Clonality Testing of B- and T- Cell Gene Rearrangements is the worldwide Gold Standard.
- **Clonality** testing should be performed **at the minimum**, in all cases where the pathological results contradict the clinical findings.
- **Combining targets** results in excellent sensitivity.
- **NGS** allows for unprecedented **detection levels** and information.

