LymphoTrack[®] Assays Technical Training MiSeq[®] and Ion S5/PGM[™] Platforms

LymphoTrack[®] - Workflow

LymphoTrack[®] - MiSeq[®] Target Loci

LymphoTrack[®]

LymphoTrack[®] - S5/PGM[™] Target Loci

LymphoTrack[®] - Available Kits

	Mi	Seq®		
RUO Products	Kit A 8 indices (40 rxn)	Panel 24 indices (120 rxn)	12 indices (60 rxn)	
LymphoTrack [®] IGHV Leader Somatic Hypermutation Assay	\checkmark	\checkmark		48 indices
LymphoTrack [®] IGH FR1 Assay	\checkmark	\checkmark	\checkmark	available for IGH FR1
LymphoTrack [®] IGH FR2 Assay	\checkmark	\checkmark	\checkmark	MiSeq [®]
LymphoTrack [®] IGH FR3 Assay	\checkmark	\checkmark	\checkmark	
LymphoTrack [®] IGH FR1/2/3 Assay	\checkmark	\checkmark	\checkmark	
LymphoTrack [®] IGK Assay	\checkmark	\checkmark	\checkmark	
LymphoTrack [®] TRG Assay	\checkmark	\checkmark	\checkmark	
LymphoTrack [®] TRB Assay	\checkmark	\checkmark		

LymphoTrack® Assays Experiment Planning

LymphoTrack[®] - Experiment Planning

Key Factors

- How many samples?
- How many targets?
- Which targets?

These will determine:

- # of indices needed (8 / 12 / 24)
- MiSeq[®] Kit/Cycles, Ion[™] Chip
- Cost per target per sample

LymphoTrack[®]

LymphoTrack[®] - MiSeq[®] Compatibility

	Avg. Target Size	MiSeq [®] Reagent		
LymphoTrack [®] Assay	Index & Adaptor (bp)	Kit v2 (300 cycle)	Kit v2 (500 cycle)	Kit v3 (600 cycle)
IGHV Leader SHM	660	X	X	0
IGH FR1	450	X	0	0
IGH FR2	390	X	0	0
IGH FR3	260	0	0	0
IGK	410	X	0	0
TRG	300	0	0	0
TRB	400	X	0	0

MiSeq [®] Reagent Kit	Read Length	MCS Version	MiSeq [®] Run Time	Reads	%≥Q30
	2 x 151 bp	v2.6	~ 24 hours	up to 15 Million	> 80%
٧Z	2 x 251 bp	v2.6	~ 39 hours		> 75%
v3	2 x 301 bp	v2.6	~ 56 hours	up to 25 million	> 70%

LymphoTrack

LymphoTrack[®] - S5/PGM[™] Compatibility

🖾 LymphoT	rack [®]
-----------	-------------------

LymphoTrack [®] Assay	Avg. Target Size incl. Target, Index & Adaptor (bp)	Chef/OT2 [™] Reagent for S5/PGM [™]
IGH FR1	430	For Ion S5 TM use:
IGH FR2	370	Ion 510, Ion 520, or Ion 530 – for Ion Chef''' or
IGH FR3	240	Ion 520 Chip or Ion 530 Chip - for OneTouch 2™
IGK	390	For Ion PGM™ use:
TRG	280	PGM Hi-Q View

Platform	Template Prep.	Sequencing Kit	Chip	Reads
lon Chef™		Ion 510 – Chef Ion 520 – Chef Ion 530 – Chef	Ion 520 Chip	4 – 6 million
	OneTouch 2™	Ion 520 – OT2 Ion 530 – OT2	Ion 530 Chip	15 – 20 million
Ion PGM™ OneTouch 2™ PGM Hi-Q V		lon 316 Chip kit v2 BC	2 – 3 million	
		Ion 318 Chip Kit v2 BC	4 - 5.5 million	

LymphoTrack[®] - Multiplexing

Single Assay Multiplexing

- Up to 12 (S5/PGM[™]) or 24 (MiSeq[®]) samples and controls can be multiplexed into one run
- Up to 48 indices available for IGH FR1 MiSeq[®]

Multi-Target Multiplexing

- The same sample can be tested across multiple LymphoTrack[®] assays in one run
- Each sample receives a unique index
- # of sequencing cycles must be sufficient for the largest amplicon in the multiplex

	1	2	3	4
А	Index 01	Index 09	Index 01	Index 09
	Sample A	Sample I	Sample A	Sample I
В	Index 02	Index 10	Index 02	Index 10
	Sample B	Sample J	Sample B	Sample J
С	Index 03	Index 11	Index 03	Index 11
	Sample C	Sample K	Sample C	Sample K
D	Index 04	Index 12	Index 04	Index 12
	Sample D	Sample L	Sample D	Sample L
Е	Index 05	Index 13	Index 05	Index 13
	Sample E	Sample M	Sample E	Sample M
F	Index 06	Index 14	Index 06	Index 14
	Sample F	PosCtrl	Sample F	PosCtrl
G	Index 07	Index 15	Index 07	Index 15
	Sample G	NegCtrl	Sample G	NegCtrl
Н	Index 08	Index 15	Index 08	Index 15
	Sample H	NTC	Sample H	NTC
	IGH	FR1	TR	G

LymphoTrack[®] - Example Calculation

LymphoTrack[®] Assays

Workflow Overview

LymphoTrack[®] - Workflow

All LymphoTrack[®] Assays follow the same **7 step procedure**

Multiplexed assays can be run sideby-side to **reduce laboratory time**

This simplified process allows even new NGS users to succeed with ease

LymphoTrack[®] - MiSeq[®] Time

LymphoTrack	
-------------	--

<u>Hands-On</u>	<u>Total Time</u>	
30 min	30 min	
0 min	150 min	
30 min	45 min	
60 min	180 min	
30 min	30 min	
30 min	30 min	
0 min	~48 hours	
~3 hours	~56 hours	
	Hands-On 30 min 0 min 30 min 60 min 30 min 0 min	Hands-OnTotal Time30 min30 min0 min150 min30 min45 min60 min180 min30 min30 min30 min30 min0 min~48 hours~3 hours~56 hours

LymphoTrack[®] - S5/PGM[™] Time

LymphoTrack[®]

Ion S5/PGM[™] - Technical Differences

LymphoTrack® Procedures are consistent across both platforms

Ion Chef[™] helps automate template preparation

- Minimizes hands-on time
- Improves consistency of results

Ion S5[™] is compatible with Ion OT2[™], Chef[™] & LymphoTrack[®] Assays

- Ability to generate longer amplicons
- Increased number of reads

Ion Chef[™] & Ion S5[™] provide a simple to use, automated NGS solution

- Cartridge-based reagents
- Consumable tracking with the automated RFID

LymphoTrack

PGM[™]

S5[™]

Ion S5/PGM[™] - Run Time Comparisons

Stop	Total Processing Time (Hours)			
Siep	OT2/PGM	OT2/S5	Chef/S5	
PCR	~2.5	~2.5	~2.5	
AMPure XP Purification	~0.5	~0.5	~0.5	
Quantification & Pooling	~1.0	~1.0	~1.0	
Template Prep	~6.5*	~6.5*	~12.0*	
Sequencing*	~4.0 - 8.0	~4.0	~4.0	
Time-to-Result	~14.5 – 18.5	~14.5	~20.0	

Sequencing time will vary depending on the chip in use Analysis time will vary depending on instrument and chip type *Hands-on time is significantly reduced for Ion Chef

PGM[™] S5[™]

Step 1 - Prepare DNA Samples

DNA Input

- Use an appropriate resuspension/ elution buffer such as 1/10 TE buffer (1 mM Tris-HCl, 0.1 mM EDTA, pH 8.0)
- Quantify DNA with a method specific for double-stranded DNA (dsDNA) e.g. Qubit.
- Minimum input quantity is 50 ng of highquality DNA in 5 µL volume (10 ng/µL)
- Invivoscribe Specimen Control Size Ladder can be used to confirm quality of DNA.

LymphoTrack

Simplified Setup

- Premade master mix: just add enzyme and sample
- Always include positive, negative, and non-template controls!

Reagent	Volume	Step	Temperature	Time	Cycles
Master Mix	45 ul	1	95 ℃	07:00	1
		2	95 °C	00:45	
EagleTaq™ DNA polymerase	0.2 µL	3	60 °C	00:45	29x*
Sample or Control DNA	5 µL	4	72 °C	01:30	
		5	72 °C	10:00	1
Total Volume	50.2 μL	6	15 °C	Hold	1

*32x for IGHV Leader

Step 3 - Purify Amplicons

SPRI Bead Purification

 Removes excess primers, salts, and enzymes

Purification Procedure

- Add beads to each sample and incubate at room temperature
- Place on magnetic stand to separate beads from the supernatant
- Wash twice with 200 µL of fresh 70/80% Ethanol
- Air dry at room temperature
- Elute in 10mM Tris pH 8.0

PCR Product Quantification (MiSeq[®])

- Quantify PCR products using KAPA Library Quantification Kit for Illumina systems
- Compare Ct values of positive and negative controls to the NTC (Δ Ct must be \geq 4.0*)

PCR Product Quantification (S5/PGM[™])

• Quantify PCR products using either 2100 BioAnalyzer or LabChip Gx systems

Library Pooling & Quantification

- Dilute samples to 4 nM in at least 10 µL and then pool them together to be equimolar
- Quantify library using the same quantification platform
- MiSeq[®]: Denature, and then dilute pool to 12-20 pM
- S5/PGM[™]: Dilute pool to 20 pM
- * Δ Ct must be \geq 3.0 for TRB MiSeq Assay

LymphoTrack

Optional - Target Multiplexing

Generate sample specific library pools & quantify

Use target size and pool concentrations to create an equimolar final loading pool

Best practice to quantify final loading pool for accurate loading

LymphoTrack

Step 5 - Load and Run MiSeq®

Library Denaturation & Dilution

- The library pool is denatured into single strands using sodium hydroxide
- After incubation, the library is diluted to 40 pM

Loading Concentration

- One final dilution prepares the library for loading.
- The final loading concentration is dependent on the MiSeq[®] chemistry being used and the targets being sequenced
- Libraries should be loaded within an hour of denaturating & diluting

Reagent	Volume	
4 nM Library	10 µL	
0.2 N NaOH	10 µL	
Incubate for 5 min	utes at RT	
Cold HT1 Buffer	980 µL	
Total (40 pM)	1000 µL	

Descent	Loading Concentration							
keageni	12 pM	15 pM	20 pM					
40 pM Library	300 µL	375 µL	500 µL					
HT1 Buffer	700 µL	625 µL	500 µL					
TOTAL	1000 µL	1000 µL	1000 µL					

MiSeq®

Step 5 - Load and Run MiSeq®

Loading

 Load 600 µL of the Final Prepared Library onto a MiSeq[®] Reagent Cartridge

Sample Sheet

- Use Illumina Experiment Manager™ OR
- Use the provided SampleSheet.csv file and modify the template for your sample needs

Starting Your Run

- Direct the MiSeq[®] to the saved sample sheet
- Start the instrument using the user interface

LymphoTrack

MiSeq®

Step 5 - Load and Run S5/PGM[™]

Winvivoscribe

LymphoTrack[®]

PGM[™]

S5[™]

Sequencing by Synthesis

A quick look at what is happening inside the sequencer

Sequencing by Synthesis

Sequencing by Synthesis

* invivoscribe Improving Lives with Precision Diagnostics*

Confidential and Proprietary Information. Unauthorized use, replication or dissemination is prohibited. LymphoTrack Assays are for research use only. Not for use in diagnostic procedures.

LymphoTrack[®]

MiSeq[®] Base Calling

Fluorescence Detection

- Nucleotides with fluorophores are used to extend from the sequencing primer
- The added base is excited with light and the resulting fluorescence is imaged by a camera
- The color that is emitted allows the instrument to determine which base was added
- The dye and terminator are removed and the process is repeated for the next cycle/base

Reads

- When a single strand of DNA is sequenced, this is considered one '**read**'
- During PCR, many copies of each starting DNA strand were generated
- Copies of a normal rearrangement can be sequenced, producing multiple reads with the same sequence
- When a very large number of reads have the same sequence, it likely means there
 were more than one of the original strand
- This is the basis for clonality testing by NGS: an overabundance in reads of one sequence when compared to a background of relatively low prevalence (polyclonal) reads

https://binf.snipcademy.com/lessons/ngs-techniques/illumina-solexa

LymphoTrack[®] Assays Workflow Overview (continued)

Step 6 - Included Bioinformatics

Data Analysis

- Transfer the appropriate files to a local folder (not on the Instrument)
- Launch LymphoTrack[®] Software
- Select targets, decimal format, and location of .fastq files
- Select 'Launch Program'

LymphoTrack

Step 6 - Included Bioinformatics

PDF reports are automatically generated per sample and target

Data is presented numerically to allow for **objective interpretation**

Graphs are provided to allow for visualization of results

Total Read Count: 673441

IndexQ30: 89.45

Caution: Do not edit fields and save.

Тор	010	Mer	ged	Read	S	ummar	y

Rank	Sequence	Length	Merge count	V-gene	J-gene	% total reads	Cumulativ e %	Mutation rate to partial V- gene (%)	In-frame (Y/N)	No Stop codon (Y/N)	V- coverage	CDR3 Seq
1	CATCTGGATACAC	295	49206	IGHV1- 46_03	IGHJ4_02	7.31	7.31	0.00	Y	Y	100.00	not found
2	GCCTCTGGATTCA	300	181	IGHV3- 35_01	IGHJ6_02	0.03	7.33	3.96	N	N	99.12	not found
3	ACCTCTGCAATCA	159	172	IGHV3- 21_04	IGHJ6_02	0.03	7.36	1.32	n/a	N	22.03	not found
4		272	171	IGHV3- 74_02	IGHJ4_02	0.03	7.38	6.67	Y	Y	88.44	not found
5	GCGTCTGGAATC	166	160	IGHV3- 30_02	none	0.02	7.41	5.73	n/a	N	72.25	not found

Step 7 - Analyze

MiSeq® Validity Specs

 MiSeq[®] instrument run validity specifications are dependent on the MiSeq[®] kit chemistry and the number of sequencing cycles

S5/PGM™ Run Validity Specs

- Loading > 50%
- Enrichment > 50%
- Clonal > 50%

Assay Specifications

- Positive Control top % Reads $\ge 2.5\%$
- Negative Control top % Reads < 1.0%
- If all validity criteria are met, move forward to interpretation & reporting

Step 7 – Analyze

Top 10 Merged Read Summary

The Read Summary tab only shows the top 10 reads after merging with the top 500 reads that differ in 1 or 2 nucleotides

Note: This analysis is also possible with IGH FR1

Improving Lives with Precision Diagnostics

LymphoTrack Report for assay LEADER

Sample name: Leader_positive_S23_L001_001_combined

Total Read Count: 474947

IndexQ30: 87.88

Caution: Do not edit fields and save.

Rank	Sequence	Length	Merge count	V-gene	J-gene	% total reads	Cumulativ e %	Mutation rate to partial V- gene (%)	In-frame (Y/N)	No Stop codon (Y/N)	V- coverage	CDR3 Seq
1	ттстсетеетее	455	50248	IGHV4- 59_08	IGHJ4_02	10.58	10.58	11.26	Y	Y	98.63	GCGAGACGGAG
2	СТӨСТАСТӨАСТС	319	192	IGHV2- 70_10	IGHJ4_02	0.04	10.62	4.32	n/a	N	35.55	not found
3		466	175	IGHV2- 5_01	IGHJ5_01	0.04	10.66	6.62	Y	Y	100.00	GCACACAGACCG
4	CTGCTGCTGACC/	457	162	IGHV2- 5_05	IGHJ6_02	0.03	10.69	2.99	Y	Y	99.67	GCACACAGATAC
5		474	154	IGHV2- 5_05	IGHJ4_02	0.03	10.72	3.99	Y	Y	99.67	GCACACAGATAC
6		454	150	IGHV2- 5_10	IGHJ5_02	0.03	10.76	11.78	Y	Y	98.99	GCATATGGTGTA
7	CTGCTGCTGACC/	469	139	IGHV2- 5_01	IGHJ4_02	0.03	10.78	1.32	Y	Y	97.68	GCACTCGCGACA
8	стедесстесте	466	139	IGHV5- 51_01	IGHJ4_02	0.03	10.81	7.09	Y	Y	99.32	GCGAGATACTAT
9	СТӨСТАСТӨАСТС	490	137	IGHV2- 70_10	IGHJ3_02	0.03	10.84	0.66	Y	Y	99.34	GCACGGATTCCT
10	CTGCTGCTGACC	478	135	IGHV2- 5_10	IGHJ6_02	0.03	10.87	3.70	Y	Y	98.99	GCATACACTTGT

Top 10 Morgod Pood Summary

Confidential and Proprietary Information. Unauthorized use, replication or dissemination is prohibited. LymphoTrack Assays are for research use only. Not for use in diagnostic procedures

Step 7 – Analyze

LymphoTrack Report for assay LEADER

Sample name: Leader_positive_S23_L001_001_combined

Total Read Count: 474947

IndexQ30: 87.88

Caution: Do not edit fields and save.

Top 10 Merged Read Summary

						<u> </u>			-			
Rank	Sequence	Length	Merge count	V-gene	J-gene	% total reads	Cumulativ e %	Mutation rate to partial V- gene (%)	In-frame (Y/N)	No Stop codon (Y/N)	V- coverage	CDR3 Seq
1	ттстсстостост	455	50248	IGHV4- 59_08	IGHJ4_02	10.58	10.58	11.26	Y	Y	98.63	GCGAGACGGAG
2		319	192	IGHV2- 70_10	IGHJ4_02	0.04	10.62	4.32	n/a	Ν	35.55	not found
3		466	175	IGHV2- 5_01	IGHJ5_01	0.04	10.66	6.62	Y	Y	100.00	GCACACAGACCG
4		457	162	IGHV2- 5_05	IGHJ6_02	0.03	10.69	2.99	Y	Y	99.67	GCACACAGATAC
5		474	154	IGHV2- 5_05	IGHJ4_02	0.03	10.72	3.99	Y	Y	99.67	GCACACAGATAC
6		454	150	IGHV2- 5_10	IGHJ5_02	0.03	10.76	11.78	Y	Y	98.99	GCATATGGTGTA
7		469	139	IGHV2- 5_01	IGHJ4_02	0.03	10.78	1.32	Y	Y	97.68	GCACTCGCGACA
8	стоссостостос	466	139	IGHV5- 51_01	IGHJ4_02	0.03	10.81	7.09	Y	Y	99.32	GCGAGATACTAT
9		490	137	IGHV2- 70_10	IGHJ3_02	0.03	10.84	0.66	Y	Y	99.34	GCACGGATTCCT
10		478	135	IGHV2- 5_10	IGHJ6_02	0.03	10.87	3.70	Y	Y	98.99	GCATACACTTGT

Expected Values IGHV SHM

- IGH Positive Control top % reads ≥ 2.5%
- NGS Negative Control top % reads < 1.0%
- IGH SHM Positive Control (4-088-0008, can be purchased separately) top % reads ≥ 2.5%
- IGH SHM Positive Control mutation rate ≥ 2.0%
- MiSeq Run Validity Q30 > 70% for v3 (2x301)

Merged Top 10 File

- 10 most prevalent merged sequences
- Top 500 reads are scanned for having up to 2 mismatches to the top 10 sequences to account for PCR & Sequencing error

Read Summary File

- Top 200 unmerged reads
- Aligned to identified V and J genes

Unique Reads File

g Lives with Precision Diagnostic

• All unique reads identified in the fastq file. Can be useful for troubleshooting

Name	
XII combinedMergeReads.tsv	
LymphoTrackMiSeq.log	
Pos_S23_L001_001_combined.fastq_CDR3_unique_reads.tsv	
Pos_S23_L001_001_combined.fastq_indexQ30.tsv	
Pos_S23_L001_001_combined.fastq_read_summary.tsv	
Pos_S23_L001_001_combined.fastq_read_summary_family.tsv	
🕅 Pos_S23_L001_001_combined.fastq_read_summary_merged_top10_searchtop500.tsv	
Pos_S23_L001_001_combined.fastq_unique_reads.tsv	
Pos_S23_L001_001_combined.fastq_VJ_sequence_frequency_family.tsv	
Pos_S23_L001_001_combined.fastq_VJ_usage.tsv	
Pos_S23_L001_001_combined.fastq_VJ_usage_family.tsv	
Pos_S23_L001_001_combined021920031017.pdf	

Take Home Message

All LymphoTrack[®] assays follow **one simple workflow**

NGS can seem overwhelming – LymphoTrack® simplifies the process by reducing steps, labor costs, and analysis time

Multiplexing targets into one run is a great way to reduce cost per target

Included bioinformatics package **streamlines analysis** and provides flexible reporting methods

